题目链接

\(Description\)

给出两个串\(S,T\),求\(T\)在\(S\)中出现了多少次。出现是指。可以有\(3\)次(\(3\)个字符)不匹配(修改使其匹配)。

\(Solution\)

一个套路的做法是构造多项式CF528D),对每个字符c单独考虑,\(f[i]=[S[i]可匹配c],g[i]=[T[i]==c]\)。

然后\(F=f*g\),可以得到每个位置往后长\(m\)的串中有多少个位置\(S,T\)都匹配了\(c\)。如果某个位置匹配字符数\(\geq m-3\),则以它为左端点的串可行。

FFT/NTT实现,常数好也许能过。

SA做法:枚举\(S\)的每个位置\(i\),设当前匹配\(T\)匹配到\(j\),得到两个串的ht数组后我们可以\(O(1)\)求出\(LCP(suf[i],suf[j])\),直接\(j+=LCP\)就行了。

如果某个位置不匹配,可以至多用\(3\)次机会直接跳过去。所以实际枚举\(j\)的次数只有\(5\)。

复杂度\(O(Tn\log n)\)。

SAM做法:得到parent树后,直接在上面DFS,如果能匹配则走,不能匹配则用一次次数。走了\(m\)步则加上该点的贡献(出现过多少次)。

复杂度\(O(Tn)\)。

还有某种神奇的Hash做法。。好像复杂度比较优。


SAM:

//9224kb	1624ms
#include <cstdio>
#include <cstring>
#include <algorithm>
const int N=2e5+5; struct Suffix_Automaton
{
int n,Ans,tot,las,son[N][4],fa[N],len[N],cnt[N],tm[N],A[N],ref[233];
char s[N]; Suffix_Automaton() {tot=las=1;}
void Insert(int c)
{
int np=++tot,p=las;
len[las=np]=len[p]+1, cnt[np]=1;
for(; p&&!son[p][c]; p=fa[p]) son[p][c]=np;
if(!p) fa[np]=1;
else
{
int q=son[p][c];
if(len[q]==len[p]+1) fa[np]=q;
else
{
int nq=++tot; len[nq]=len[p]+1;
memcpy(son[nq],son[q],sizeof son[q]);
fa[nq]=fa[q], fa[q]=fa[np]=nq;
for(; son[p][c]==q; p=fa[p]) son[p][c]=nq;
}
}
}
void Build()
{
tot=las=1;
ref['A']=0, ref['T']=1, ref['G']=2, ref['C']=3;
memset(tm,0,sizeof tm);//! 你前缀和了→_→
memset(cnt,0,sizeof cnt), memset(son,0,sizeof son); scanf("%s",s+1); int l=strlen(s+1);
for(int i=1; i<=l; ++i) Insert(ref[s[i]]);
for(int i=1; i<=tot; ++i) ++tm[len[i]];
for(int i=1; i<=l; ++i) tm[i]+=tm[i-1];
for(int i=1; i<=tot; ++i) A[tm[len[i]]--]=i;
for(int i=tot,x=A[i]; i; x=A[--i]) cnt[fa[x]]+=cnt[x];
}
void DFS(int x,int use,int l)
{
if(l==n) return (void)(Ans+=cnt[x]);
for(int i=0; i<4; ++i)
if(son[x][i])
if(ref[s[l]]==i) DFS(son[x][i],use,l+1);
else if(use<3) DFS(son[x][i],use+1,l+1);
}
void Query()
{
scanf("%s",s), n=strlen(s);
Ans=0, DFS(1,0,0), printf("%d\n",Ans);
}
}sam; int main()
{
int T; scanf("%d",&T);
while(T--) sam.Build(), sam.Query();
return 0;
}

SA:

//19768kb	5976ms(好慢...)
#include <cstdio>
#include <cstring>
#include <algorithm>
const int N=2e5+7; int MAP[233],sa[N],sa2[N],rk[N],tm[N],ht[N],lg2[N],mn[18][N];
char s[N]; void Get_SA(int n)
{
int *x=rk,*y=sa2,m=5;
for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]=MAP[s[i]]];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[i]]--]=i;
for(int k=1,p=0; k<n; k<<=1,m=p,p=0)
{
for(int i=n-k+1; i<=n; ++i) y[++p]=i;
for(int i=1; i<=n; ++i) if(sa[i]>k) y[++p]=sa[i]-k; for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[y[i]]]--]=y[i]; std::swap(x,y), x[sa[1]]=p=1;
for(int i=2; i<=n; ++i)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?p:++p;
if(p>=n) break;
}
for(int i=1; i<=n; ++i) rk[sa[i]]=i;
ht[1]=0;
for(int i=1,k=0,p; i<=n; ++i)
{
if(rk[i]==1) continue;
if(k) --k;
p=sa[rk[i]-1];
while(i+k<=n && p+k<=n && s[i+k]==s[p+k]) ++k;
ht[rk[i]]=k;
}
}
void Init_ST(int n)
{
for(int i=1; i<=n; ++i) mn[0][i]=ht[i];
for(int j=1; j<=lg2[n]; ++j)
for(int i=1; i<=n; ++i)
mn[j][i]=std::min(mn[j-1][i],mn[j-1][i+(1<<j-1)]);
}
inline int LCP(int l,int r)
{
l=rk[l], r=rk[r]; if(l>r) std::swap(l,r);
++l;
int k=lg2[r-l+1];
return std::min(mn[k][l],mn[k][r-(1<<k)+1]);
} int main()
{
MAP['A']=1, MAP['T']=2, MAP['C']=3, MAP['G']=4, MAP['Z']=5;
lg2[1]=0;
for(int i=2; i<=200005; ++i) lg2[i]=lg2[i>>1]+1; int T; scanf("%d",&T);
while(T--)
{
int l,n;
scanf("%s",s+1), s[l=strlen(s+1)+1]='Z';
scanf("%s",s+l+1), n=strlen(s+1);
Get_SA(n), Init_ST(n);
int ans=0;
for(int i=1,m=n-l,lim=l-m; i<=lim; ++i)
{
for(int j=1,t=0; t<=3; )
{
if(j>m) {++ans; break;}
else if(s[i+j-1]!=s[l+j]) ++j, ++t;
else j+=LCP(i+j-1,l+j);
}
}
printf("%d\n",ans);
}
return 0;
}

BZOJ.4892.[TJOI2017]DNA(后缀自动机/后缀数组)的更多相关文章

  1. BZOJ 4892 [Tjoi2017]dna 哈希+二分

    自己简直是傻死了...对于位置想错了... 二分出来的是LCP长度$+1$,即每一次二分出来的最后一个点都是失配的,而就算失配也会跳过这个点:所以当$k<=3$且模式串$s2$的指针$>l ...

  2. poj 1743 Musical Theme 后缀自动机/后缀数组/后缀树

    题目大意 直接用了hzwer的题意 题意:有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复的主题."主题&qu ...

  3. [模板] 后缀自动机&&后缀树

    后缀自动机 后缀自动机是一种确定性有限状态自动机, 它可以接收字符串\(s\)的所有后缀. 构造, 性质 翻译自毛子俄罗斯神仙的博客, 讲的很好 后缀自动机详解 - DZYO的博客 - CSDN博客 ...

  4. bzoj 3277: 串 & bzoj 3473: 字符串【后缀自动机||后缀数组】

    建一个广义后缀自动机(每加完一个串都返回root),在parent树上dpsum记录合法长度,打着时间戳往上跳,最后每个串在自动机上跑一变统计答案即可. 后缀数组理解起来可能方便一点,但是难写,就只说 ...

  5. 回文树&后缀自动机&后缀数组

    KMP,扩展KMP和Manacher就不写了,感觉没多大意思.   之前感觉后缀自动机简直可以解决一切,所以不怎么写后缀数组.   马拉车主要是通过对称中心解决问题,有的时候要通过回文串的边界解决问题 ...

  6. SPOJ705 Distinct Substrings (后缀自动机&后缀数组)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  7. POJ3080 POJ3450Corporate Identity(广义后缀自动机||后缀数组||KMP)

    Beside other services, ACM helps companies to clearly state their “corporate identity”, which includ ...

  8. SPOJ SUBLEX - Lexicographical Substring Search 后缀自动机 / 后缀数组

    SUBLEX - Lexicographical Substring Search Little Daniel loves to play with strings! He always finds ...

  9. UVA - 11107 Life Forms (广义后缀自动机+后缀树/后缀数组+尺取)

    题意:给你n个字符串,求出在超过一半的字符串中出现的所有子串中最长的子串,按字典序输出. 这道题算是我的一个黑历史了吧,以前我的做法是对这n个字符串建广义后缀自动机,然后在自动机上dfs,交上去AC了 ...

随机推荐

  1. BackBone结合ASP.NET MVC实现页面路由操作

    1. 问题的背景 什么是页面路由操作,就是通过浏览器地址栏的标记来实现页面内部的一些操作,这些操作具有异步性和持久性.应用场景主要有页面操作过程中的添加收藏夹的操作.后退操作等过程中能完全恢复界面. ...

  2. ARMV8 datasheet学习笔记3:AArch64应用级体系结构之Memory order

    1.前言 2.基本概念 Observer 可以发起对memory read/write访问的都是observer; Observability 是一种观察能力,通过read可以感知到别的observe ...

  3. oracle 监听 添加ip

    同时修改tnsnames.ora.listener.ora将这两个文件中HOST后面的主机都修改为127.0.0.1然后重启OracleServiceXE.OracleXETNSListener服务 ...

  4. centos6.5下系统编译定制iptables防火墙扩展layer7应用层访问控制功能及应用限制QQ2016上网

    iptables防火墙扩展之layer7应用层访问控制 概述: iptables防火墙是工作在网络层,针对TCP/IP数据包实施过滤和限制,属于典型的包过滤防火墙.以基于网络层的数据包过滤机制为主,同 ...

  5. vue2之 missing param for named route "xxxx"

    场景: 解决方法:可以做的是将其包含router-link在适当的位置v-if,以便在您的异步数据实际到达之前不会尝试渲染. html代码: <div id="app" cl ...

  6. 搭建ssh框架项目(二)

    一.创建dao层 (1)创建接口ICommonDao.java package com.cppdy.ssh.dao; public interface ICommonDao<T> { pu ...

  7. MySQL表的定期分析检查优化

    Analyze Table 分析表   MySQL 的Optimizer(优化元件)在优化SQL语句时,首先需要收集一些相关信息,其中就包括表的cardinality(可以翻译为“散列程度”),它表示 ...

  8. linux下如何使用gdb调试

    gdb是linux下非常好用的一个调试工具,虽然它是命令行模式的调试工具,但是它的功能强大到你无法想象,这里简单介绍下gdb下常用的命令. 首先编译生成可执行文件(这里的test.c是一个简单的求前n ...

  9. 【C++ Primer | 15】虚继承

    虚基类 一.虚基类介绍 多继承时很容易产生命名冲突,即使我们很小心地将所有类中的成员变量和成员函数都命名为不同的名字,命名冲突依然有可能发生,比如非常经典的菱形继承层次.如下图所示: 类A派生出类B和 ...

  10. Mysql查询出所有列名

    select group_concat(COLUMN_NAME Separator ',') as COLUMN_NAME from information_schema.COLUMNS where ...