[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列
[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列
题目大意:
给你一个长度为\(n(n\le10^5)\)的整数序列,其中有一些数已经模糊不清了,现在请你任意确定这些整数的值,使得最长上升子序列最长。求最长长度。
思路:
一定存在一种最优方案使得不确定的都选上(考虑新选上一个不确定的数,最多会使一个已确定的数失效),因此令\(a_i=a_i-cnt\)(\(cnt\)为之前不确定的数的个数),求LIS后加上\(cnt\)即可。
源代码:
#include<cstdio>
#include<cctype>
#include<climits>
#include<algorithm>
inline int getint() {
register char ch;
register bool neg=false;
while(!isdigit(ch=getchar())) neg|=ch=='-';
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return neg?-x:x;
}
inline char getupper() {
register char ch;
while(!isupper(ch=getchar()));
return ch;
}
const int N=1e5+1;
int a[N],tmp[N];
class FenwickTree {
private:
int val[N];
int lowbit(const int &x) const {
return x&-x;
}
public:
void modify(int p,const int &x) {
for(;p<=tmp[0];p+=lowbit(p)) {
val[p]=std::max(val[p],x);
}
}
int query(int p) const {
int ret=0;
for(;p;p-=lowbit(p)) {
ret=std::max(ret,val[p]);
}
return ret;
}
};
FenwickTree bit;
int main() {
const int n=getint();
int cnt=0;
for(register int i=1;i<=n;i++) {
if(getupper()=='K') {
a[i]=tmp[i-cnt]=getint()-cnt;
} else {
a[i]=INT_MAX;
cnt++;
}
}
std::sort(&tmp[1],&tmp[n-cnt]+1);
tmp[0]=std::unique(&tmp[1],&tmp[n-cnt]+1)-&tmp[1];
for(register int i=1;i<=n;i++) {
if(a[i]==INT_MAX) continue;
a[i]=std::lower_bound(&tmp[1],&tmp[tmp[0]]+1,a[i])-tmp;
bit.modify(a[i],bit.query(a[i]-1)+1);
}
printf("%d\n",bit.query(tmp[0])+cnt);
return 0;
}
[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列的更多相关文章
- [bzoj4282]慎二的随机数列_动态规划_贪心
慎二的随机数列 bzoj-4282 题目大意:一个序列,序列上有一些数是给定的,而有一些位置上的数可以任意选择.问最长上升子序列. 注释:$1\le n\le 10^5$. 想法:结论:逢N必选.N是 ...
- bzoj4282慎二的随机数列
海带头又上线了QwQ~ 这是一个奇怪的lis问题 显然一定存在一种最优答案使所有辨认不清的数都在答案中. [为什么呢]因为你完全可以用一个'N'来替换一个'K'啊QwQ~ 那么在选完所有'N'之后,一 ...
- BZOJ4282 : 慎二的随机数列
首先在开头加上-inf,结尾加上inf,最后答案减2即可. 设s[i]为i之前未知的个数,f[i]为以i结尾的LIS,且a[i]已知,那么: f[i]=max(f[j]+min(s[i]-s[j],a ...
- bzoj4282 慎二的随机数列 树状数组求LIS + 构造
首先,我们不难发现N个位置都选一定不会比少选任意几个差,所以我们就先设定我们将这N个修改机会都用上, 那么如果点 i">ii 前有sumv">sumvsumv个可修改点 ...
- 【BZOJ4282】慎二的随机数列 乱搞
[BZOJ4282]慎二的随机数列 Description 间桐慎二是间桐家著名的废柴,有一天,他在学校随机了一组随机数列, 准备使用他那强大的人工智能求出其最长上升子序列,但是天有不测风云,人有旦夕 ...
- 【bzoj4282】慎二的随机数列
扯几句题外的,最近在看Fate/StayNight,对此人毫无好感…… 每次减一下当前可辨认数,然后随意dp一个LIS,最后记得加回去就好. #include<bits/stdc++.h> ...
- BZOJ 4282(慎二的随机数列
题解: 网上题解还没看 我的方法是用平衡树维护一个单调栈 由于N用了一定是赚的 所以它的作用是让f[i+1]=f[i]+1 这个是可以记录的 就跟noip蚯蚓那题一样 然后插入一个值的时候查询前面的最 ...
- [BZOJ5427]最长上升子序列
考虑O(n log n)的LIS求法,dp[i]表示到目前为止,长度为i的LIS的末尾最小是多少. 当当前数确定时直接用LIS的求法更新dp数组,当不确定时,由于这个数可以是任意数,所以可以接在任意上 ...
- 动态规划———最长公共子序列(LCS)
最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/ ...
随机推荐
- dubbo系列三、架构介绍及各模块关系
一.整体设计 图例说明: 图中左边淡蓝背景的为服务消费方使用的接口,右边淡绿色背景的为服务提供方使用的接口,位于中轴线上的为双方都用到的接口. 图中从下至上分为十层,各层均为单向依赖,右边的黑色箭头代 ...
- python模块介绍- binascii:二进制和ASCII互转以及其他进制转换
20.1 binascii:二进制和ASCII互转作用:二进制和ASCII互相转换. Python版本:1.5及以后版本 binascii模块包含很多在二进制和ASCII编码的二进制表示转换的方法.通 ...
- js实现弹窗居中
在一些页面中,我们总会遇到一些弹窗不居中的时候,还要根据浏览器的大小来调整弹窗的弹出位置, 之前我也遇到这样的问题,现在我把我知道的呈现给大家 css样式 .windowBox{ width:500p ...
- mybatis和spring整合的关键配置
spring配置文件 applicationContext.xml: <beans xmlns="http://www.springframework.org/schema/beans ...
- 最新 macOS Sierra 10.12.3 安装CocoaPods及使用详解
一.什么是CocoaPods 每种语言发展到一个阶段,就会出现相应的依赖管理工具,例如 Java 语言的 Maven,nodejs 的 npm.随着 iOS 开发者的增多,业界也出现了为 iOS 程序 ...
- ocos2d-x 3.0坐标系详解--透彻篇 ---- convertToWorldSpace:把基于当前节点的本地坐标系下的坐标转换到世界坐标系中。
convertToWorldSpace:把基于当前节点的本地坐标系下的坐标转换到世界坐标系中.重点说明:基于... 不一定要是真实的, convertToWorldSpace 的结果也只是一个新 ...
- linux 后台运行nohup & ctrl+z
使用Linux时,经常希望有些命令结果不在前台显示,如sh脚本,耗时的命令等.一般情况下,使用 & 将命令结果后台运行,如sh test.sh,脚本后台执行. 有时候命令已经在前台执行了,需要 ...
- LeetCode(64):最小路径和
Medium! 题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1 ...
- poj1470 LCA倍增法
倍增法模板题 #include<iostream> #include<cstring> #include<cstdio> #include<queue> ...
- 步步为营-12-Dictionary-翻译
说明:https://pan.baidu.com/s/1nvPqhDJ所需文件在此目录下对应的位置 1 先做一个简单的英汉翻译词典.先搭UI页面 2 将百度网盘中提供的资料放置到bin\debug目录 ...