题目链接

/*
896kb 6816ms
A+B+A是KMP的形式,于是固定左端点,对于每个位置i,若fail[i]所能到的点k中(k=fail[fail[fail[...]]]),有满足len(l~k)+len(i-k+l-1,i)<len(l,i),且len(l~k)>=K,则i满足条件
每个位置仅计算一次 就很好做了
O(n^2) 也能过。。
*/
#include <cstdio>
#include <cstring>
const int N=15010; int n,K,res,fail[N];
char s[N]; void KMP(int p)
{
fail[p]=p-1;
for(int k,j,i=p+1; i<=n; ++i)
{
j=fail[i-1];
while(j>=p && s[i]!=s[j+1]) j=fail[j];
k=fail[i]= s[i]==s[j+1]?j+1:p-1;
while(i-p+1<=2*(k-p+1)) k=fail[k];
if(k-p+1>=K) ++res;
}
} int main()
{
scanf("%s%d",s+1,&K), n=strlen(s+1);
for(int i=1; i<=(n-2*K); ++i) KMP(i);//别去了等号。。
printf("%d",res); return 0;
}

BZOJ.3620.似乎在梦中见过的样子(KMP)的更多相关文章

  1. BZOJ 3620: 似乎在梦中见过的样子 [KMP 暴力]

    和我签订契约,成为魔法少女吧 题意:求所有形似于A+B+A 的子串的数量 , 且len(A)>=k,len(B)>=1 位置不同其他性质相同的子串算不同子串,位置相同但拆分不同的子串算同一 ...

  2. [BZOJ 3620] 似乎在梦中见过的样子 【KMP】

    题目链接:BZOJ - 3620 题目分析 这道题使用 KMP 做 O(n^2) 的暴力就能过. 首先,我们依次枚举字串左端点 l ,然后从这个左端点开始向后做一次 KMP. 然后我们枚举右端点 r  ...

  3. bzoj 3620 似乎在梦中见过的样子(KMP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3620 [题意] 给定一个字符串,统计有多少形如A+B+A的子串,要求A>=K,B ...

  4. bzoj 3620: 似乎在梦中见过的样子

    Description "Madoka,不要相信 QB!"伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约. 这是 Modoka 的一个噩梦,也同时是上个轮回 ...

  5. 【BZOJ 3620】 3620: 似乎在梦中见过的样子 (KMP)

    3620: 似乎在梦中见过的样子 Time Limit: 15 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 445 Description “Madok ...

  6. 【BZOJ3620】似乎在梦中见过的样子 KMP

    [BZOJ3620]似乎在梦中见过的样子 Description “Madoka,不要相信 QB!”伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约. 这是 Modoka 的一个 ...

  7. 似乎在梦中见过的样子 (KMP)

    # 10047. 「一本通 2.2 练习 3」似乎在梦中见过的样子 [题目描述] 「Madoka,不要相信 QB!」伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约. 这是 Mo ...

  8. BZOJ3620: 似乎在梦中见过的样子(KMP)

    Description “Madoka,不要相信 QB!”伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约. 这是 Modoka 的一个噩梦,也同时是上个轮回中所发生的事.为了使 ...

  9. BZOJ 3620: 似乎在梦中见过的样子

    似乎在梦中见过的样子.... 一道水题调了这么久,还半天想不出来怎么 T 的...佩服自己(果然蒟蒻) 这题想想 KMP 但是半天没思路瞟了一眼题解发现暴力枚举起始点,然后 KMP 如图: O( n2 ...

随机推荐

  1. 中间人攻击之ettercap嗅探

    中间人攻击: 中间人攻击(Man-in-the-MiddleAttack,简称“MITM攻击”)是一种“间接”的入侵攻击,这种攻击模式是通过各种技术手段将受入侵者控制的一台计算机虚拟放置在网络连接中的 ...

  2. Android常用逆向工具+单机游戏破解

    android开发环境搭建 我理解的学习路线是首先要掌握和了解常见的工具.搭建环境.然后就是缓慢的积累特征,通过长期的练习使自己进步,通过android逆向课程的学习.常用的工具如下: android ...

  3. 使用 Linux 系统调用的内核命令【转】

    转自:http://www.ibm.com/developerworks/cn/linux/l-system-calls/ 探究 SCI 并添加自己的调用 Linux® 系统调用 —— 我们每天都在使 ...

  4. Ubuntu 分辨率显示出错,分辨率不是最佳分辨率的解决办法

    本文为转载,但在Ubuntu16.04LTS下亲测有效. (1)首先使用 xrandr 命令列出当前所能检测到的分辨率,如一台显示器,最佳分辨率为 1440x900(我的显示器尽量设置1680x105 ...

  5. python标准库之secrets

    secrets secrets是python3.6加入到标准库的,使用secrets模块,可以生成适用于处理机密信息(如密码,帐户身份验证,安全令牌)的加密强随机数. 导入 import secret ...

  6. jdk8系列二、jdk8方法引用、重复注解、更好的类型推断、新增注解

    一.方法引用 方法引用使得开发者可以直接引用现存的方法.Java类的构造方法或者实例对象.方法引用和Lambda表达式配合使用,使得java类的构造方法看起来紧凑而简洁,没有很多复杂的模板代码. 方法 ...

  7. navicat报caching_sha2_password异常

    使用navicat连接mysql报错(升级到mysql8版本时的错) 解决办法: 通过命令行登录mysql后, 输入: alter user 'root'@'localhost' IDENTIFIED ...

  8. 在docker中部署centos7镜像

    本篇文章参考自: https://www.cnblogs.com/linjj/p/5606911.html https://blog.csdn.net/u012767761/article/detai ...

  9. Centos socket TCP代码

    一.功能描述: 能够在Centos中创建TCP socket,实现Client给Server发送消息,Server能够Client发送消息. 二.代码如下: ①client代码: #include & ...

  10. sklearn学习笔记

    用Bagging优化模型的过程:1.对于要使用的弱模型(比如线性分类器.岭回归),通过交叉验证的方式找到弱模型本身的最好超参数:2.然后用这个带着最好超参数的弱模型去构建强模型:3.对强模型也是通过交 ...