hdu6153 poj3336强化版kmp+线性dp
发现很早以前用exkmp做过一次,但是对这题来说只要将两个串翻转一下即可转换成s2的所有前缀出现的问题
/*
给出s1,s2,求s2的每个后缀在s1中出现的次数
ans = sum{后缀长度*出现次数}
思路:把数组倒过来,求s2的nxt数组 cnt[i]当匹配到s2的第i位可以对答案做的贡献
cnt[i]=当前与s1第i个字符配对的s2的前缀长度+cnt[nxt[j]]
*/
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define mod 1000000007
#define maxn 1000005
#define ll long long char s1[maxn],s2[maxn];
int nxt[maxn],m,cnt[maxn],ans;
void reserve(char *s){
int len=strlen(s);
int i=,j=len-;
while(i<j){
swap(s[i],s[j]);
++i,--j;
}
}
void kmp_pre(char *s){
memset(nxt,,sizeof nxt);
int m=strlen(s);
int i,j;
i=,j=nxt[]=-;
while(i<m){
while(j!=- && s[i]!=s[j]) j=nxt[j];
nxt[++i]=++j;
}
for(int i=;i<=m;i++)
cnt[i]=(i+cnt[nxt[i]])%mod;
}
void kmp(){
int n=strlen(s1),m=strlen(s2);
int i=,j=;
while(i<n){
while(j!=- && s1[i]!=s2[j])
j=nxt[j];
++i,++j;
ans=(ans+cnt[j])%mod;
if(j==m)j=nxt[j];
}
}
int main(){
int t;
scanf("%d",&t);
while(t--){
memset(cnt,,sizeof cnt);
scanf("%s%s",s1,s2); reserve(s1);
reserve(s2);
kmp_pre(s2);
ans=;
kmp();
printf("%d\n",ans);
}
}
hdu6153 poj3336强化版kmp+线性dp的更多相关文章
- [KOJ6024]合并果子·改(强化版)
[COJ6024]合并果子·改(强化版) 试题描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多把这些果子堆排成一排,然后所有的果子合成一堆. 每一次合并 ...
- bzoj1009 KMP+矩阵dp
https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(<=Xi<=), ...
- [django]数据导出excel升级强化版(很强大!)
不多说了,原理采用xlwt导出excel文件,所谓的强化版指的是实现在网页上选择一定条件导出对应的数据 之前我的博文出过这类文章,但只是实现导出数据,这次左思右想,再加上网上的搜索,终于找出方法实现条 ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
随机推荐
- C#.Net 持久化对象为XML文件
</pre><pre code_snippet_id="613717" snippet_file_name="blog_20150307_1_57950 ...
- Scala进阶之路-尾递归优化
Scala进阶之路-尾递归优化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 递归调用有时候能被转换成循环,这样能节约栈空间.在函数式编程中,这是很重要的,我们通常会使用递归方法来 ...
- java的排序类 Collections
场景:比如说有一个List<Student> 里面有许多学生 我们想让这些学生按照年龄的大小排序 我们可以用java自带的 java.util.Collections 工具类来实现 Col ...
- socket技术详解(看清socket编程)
socket编程是网络常用的编程,我们通过在网络中创建socket关键字来实现网络间的通信,通过收集大量的资料,通过这一章节,充分的了解socket编程,文章用引用了大量大神的分析,加上自己的理解,做 ...
- jq版轮播图
html部分 <div class="banner"> <ul class="img"> <li><img src=& ...
- 一步一步配置 Dell OME 监控 Dell 服务器硬件报警
本文包括以下四个部分: 下载 Dell OME 安装 Dell OME 配置 Dell OME 配置 iDRAC 下载 Dell OME 以Dell PowerEdge R730xd 为例 1.登录 ...
- 一个简单的使用Quartz和Oozie调度作业给大数据计算平台执行
一,介绍 Oozie是一个基于Hadoop的工作流调度器,它可以通过Oozie Client 以编程的形式提交不同类型的作业,如MapReduce作业和Spark作业给底层的计算平台(如 Cloude ...
- VMware虚拟机Mac OS X无法调整扩展硬盘大小的解决方案(转)
使用VMware虚拟机搭建的MacOSX,在10.10以上可能会出现无法扩充磁盘大小的问题. 因为很多朋友在初次安装MacOSX的时候都默认选择40G的磁盘大小,结果用了没两天之后就发现磁盘不够用了. ...
- 淘淘商城之springmvc和mybatis整合
一.需求 使用springmvc和mybatis完成商品列表查询 二.整合思路 springmvc+mybaits的系统架构: 第一步:整合dao层 mybatis和spring整合,通过spring ...
- SmartUpload文件上传组件的使用教程
在项目中使用SmartUpload组件可以进行文件的上传和下载操作 使用步骤 1.导入jar包,进行build path操作 2.编写文件上传页面,代码如下 <form action=" ...