TextRank是一种用来做关键词提取的算法,也可以用于提取短语和自动摘要。因为TextRank是基于PageRank的,所以首先简要介绍下PageRank算法。

(1)PageRank

PageRank设计之初是用于Google的网页排名的,以该公司创办人拉里·佩奇(Larry Page)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一。PageRank通过互联网中的超链接关系来确定一个网页的排名,其公式是通过一种投票的思想来设计的:如果我们要计算网页A的PageRank值(以下简称PR值),那么我们需要知道有哪些网页链接到网页A,也就是要首先得到网页A的入链,然后通过入链给网页A的投票来计算网页A的PR值。这样设计可以保证达到这样一个效果:当某些高质量的网页指向网页A的时候,那么网页A的PR值会因为这些高质量的投票而变大,而网页A被较少网页指向或被一些PR值较低的网页指向的时候,A的PR值也不会很大,这样可以合理地反映一个网页的质量水平。那么根据以上思想,佩奇设计了下面的公式:

$PR(V_i) = (1-d) + d * \sum_{j \in In(V_i)} \frac{1}{|Out(V_j)|}PR(V_j)$

该公式中,Vi表示某个网页,Vj表示链接到Vi的网页(即Vi的入链),S(Vi)表示网页Vi的PR值,In(Vi)表示网页Vi的所有入链的集合,Out(Vj)表示网页,d表示阻尼系数,是用来克服这个公式中“d *”后面的部分的固有缺陷用的:如果仅仅有求和的部分,那么该公式将无法处理没有入链的网页的PR值,因为这时,根据该公式这些网页的PR值为0,但实际情况却不是这样,所有加入了一个阻尼系数来确保每个网页都有一个大于0的PR值,根据实验的结果,在0.85的阻尼系数下,大约100多次迭代PR值就能收敛到一个稳定的值,而当阻尼系数接近1时,需要的迭代次数会陡然增加很多,且排序不稳定。公式中S(Vj)前面的分数指的是Vj所有出链指向的网页应该平分Vj的PR值,这样才算是把自己的票分给了自己链接到的网页.

(2)TextRank算法提取关键词

TextRank是由PageRank改进而来,其公式有颇多相似之处,这里给出TextRank的公式:

$WS(V_i) = (1-d) + d * \sum_{j \in In(V_i)} \frac{w_{ji}}{\sum_{V_k \in Out(V_j)} w_{jk}} WS(V_j)$

可以看出,该公式仅仅比PageRank多了一个权重项Wji,用来表示两个节点之间的边连接有不同的重要程度。TextRank用于关键词提取的算法如下:

     (1)把给定的文本T按照完整句子进行分割;
  (2)对于每个句子,进行分词和词性标注处理,并过滤掉停用词,只保留指定词性的单词,如名词、动词、形容词;
  (3)构建候选关键词图G = (V,E),其中V为节点集,由(2)生成的候选关键词组成,然后采用共现关系(co-occurrence)构造任两点之间的边,两个节点之间存在边仅当它们对应的词汇在长度为K的窗口中共现,K表示窗口大小,即最多共现K个单词。
  (4)根据上面公式,迭代传播各节点的权重,直至收敛。
  (5)对节点权重进行倒序排序,从而得到最重要的T个单词,作为候选关键词。
  (6)由(5)得到最重要的T个单词,在原始文本中进行标记,若形成相邻词组,则组合成多词关键词。例如,文本中有句子“Matlab code for plotting ambiguity function”,如果“Matlab”和“code”均属于候选关键词,则组合成“Matlab code”加入关键词序列。

实现细节,具体可以看看源码.下面是源码中的一些细节:

首先定义一个无向有权图,然后对句子进行分词;依次遍历分词结果,如果某个词i满足过滤条件(词性在词性过滤集合中,并且词的长度大于等于2,并且词不是停用词),然后将这个词之后窗口长度为5范围内的词j(这些词也需要满足过滤条件),将它们两两(词i和词j)作为key,出现的次数作为value,添加到共现词典中;

然后,依次遍历共现词典,将词典中的每个元素,key = (词i,词j),value = 词i和词j出现的次数,其中词i,词j作为一条边起始点和终止点,共现的次数作为边的权重,添加到之前定义的无向有权图中。

然后对这个无向有权图进行迭代运算textrank算法,最终经过若干次迭代后,算法收敛,每个词都对应一个指标值;

如果设置了权重标志位,则根据指标值值对无向有权图中的词进行降序排序,最后输出topK个词作为关键词;

其中,无向有权图的的定义及实现是在UndirectWeightedGraph类中实现的。根据UndirectWeightedGraph类的初始化函数__init__,我们可以发现,所谓的无向有权图就是一个词典,词典的key是后续要添加的词,词典的value,则是一个由(起始点,终止点,边的权重)构成的三元组所组成的列表,表示以这个词作为起始点的所有的边。

无向有权图添加边的操作是在addEdge函数中完成的,因为是无向图,所以我们需要依次将start作为起始点,end作为终止点,然后再将start作为终止点,end作为起始点,这两条边的权重是相同的。

def textrank(self, sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v'), withFlag=False):

    self.pos_filt = frozenset(allowPOS)
# 定义无向有权图
g = UndirectWeightedGraph()
# 定义共现词典
cm = defaultdict(int)
# 分词
words = tuple(self.tokenizer.cut(sentence))
# 依次遍历每个词
for i, wp in enumerate(words):
# 词i 满足过滤条件
if self.pairfilter(wp):
# 依次遍历词i 之后窗口范围内的词
for j in xrange(i + 1, i + self.span):
# 词j 不能超出整个句子
if j >= len(words):
break
# 词j不满足过滤条件,则跳过
if not self.pairfilter(words[j]):
continue
# 将词i和词j作为key,出现的次数作为value,添加到共现词典中
if allowPOS and withFlag:
cm[(wp, words[j])] += 1
else:
cm[(wp.word, words[j].word)] += 1
# 依次遍历共现词典的每个元素,将词i,词j作为一条边起始点和终止点,共现的次数作为边的权重
for terms, w in cm.items():
g.addEdge(terms[0], terms[1], w) # 运行textrank算法
nodes_rank = g.rank() # 根据指标值进行排序
if withWeight:
tags = sorted(nodes_rank.items(), key=itemgetter(1), reverse=True)
else:
tags = sorted(nodes_rank, key=nodes_rank.__getitem__, reverse=True) # 输出topK个词作为关键词
if topK:
return tags[:topK]
else:
return tags
其中,无向有权图的的定义及实现是在UndirectWeightedGraph类中实现的。根据UndirectWeightedGraph类的初始化函数__init__,我们可以发现,所谓的无向有权图就是一个词典,词典的key是后续要添加的词,词典的value,则是一个由(起始点,终止点,边的权重)构成的三元组所组成的列表,表示以这个词作为起始点的所有的边。
无向有权图添加边的操作是在addEdge函数中完成的,因为是无向图,所以我们需要依次将start作为起始点,end作为终止点,然后再将start作为终止点,end作为起始点,这两条边的权重是相同的。
def addEdge(self, start, end, weight):
# use a tuple (start, end, weight) instead of a Edge object
self.graph[start].append((start, end, weight))
self.graph[end].append((end, start, weight))
执行textrank算法迭代是在rank函数中完成的。
首先对每个结点赋予相同的权重,以及计算出该结点的所有出度的次数之和;
然后迭代若干次,以确保得到稳定的结果;
在每一次迭代中,依次遍历每个结点;对于结点n,首先根据无向有权图得到结点n的所有
入度结点(对于无向有权图,入度结点与出度结点是相同的,都是与结点n相连的结点),在前面我们已经计算出这个入度结点的所有出度的次数,而它对于结点n的权值的贡献等于它本身的权值 乘以 它与结点n的共现次数 / 这个结点的所有出度的次数 ,将各个入度结点得到的权值相加,再乘以一定的阻尼系数,即可得到结点n的权值;
迭代完成后,对权值进行归一化,并返回各个结点及其对应的权值。
def rank(self):
ws = defaultdict(float)
outSum = defaultdict(float) wsdef = 1.0 / (len(self.graph) or 1.0)
# 初始化各个结点的权值
# 统计各个结点的出度的次数之和
for n, out in self.graph.items():
ws[n] = wsdef
outSum[n] = sum((e[2] for e in out), 0.0) # this line for build stable iteration
sorted_keys = sorted(self.graph.keys())
# 遍历若干次
for x in xrange(10): # 10 iters
# 遍历各个结点
for n in sorted_keys:
s = 0
# 遍历结点的入度结点
for e in self.graph[n]:
# 将这些入度结点贡献后的权值相加
# 贡献率 = 入度结点与结点n的共现次数 / 入度结点的所有出度的次数
s += e[2] / outSum[e[1]] * ws[e[1]]
# 更新结点n的权值
ws[n] = (1 - self.d) + self.d * s (min_rank, max_rank) = (sys.float_info[0], sys.float_info[3]) # 获取权值的最大值和最小值
for w in itervalues(ws):
if w < min_rank:
min_rank = w
if w > max_rank:
max_rank = w # 对权值进行归一化
for n, w in ws.items():
# to unify the weights, don't *100.
ws[n] = (w - min_rank / 10.0) / (max_rank - min_rank / 10.0) return ws

完结

 

TextRank算法的更多相关文章

  1. Textrank算法介绍

    先说一下自动文摘的方法.自动文摘(Automatic Summarization)的方法主要有两种:Extraction和Abstraction.其中Extraction是抽取式自动文摘方法,通过提取 ...

  2. TextRank算法提取关键词的Java实现

    转载:码农场 » TextRank算法提取关键词的Java实现 谈起自动摘要算法,常见的并且最易实现的当属TF-IDF,但是感觉TF-IDF效果一般,不如TextRank好. TextRank是在 G ...

  3. PageRank算法与TextRank算法详解

    PageRank算法: 该算法本质上属于有向带权图. 对于某个互联网网页A来说,该网页PageRank的计算基于以下两个基本假设: 数量假设:在Web图模型中,如果一个页面节点接收到的其他网页指向的入 ...

  4. 基于TextRank算法的文本摘要

    本文介绍TextRank算法及其在多篇单领域文本数据中抽取句子组成摘要中的应用. TextRank 算法是一种用于文本的基于图的排序算法,通过把文本分割成若干组成单元(句子),构建节点连接图,用句子之 ...

  5. TextRank算法及生产文本摘要方法介绍

    TextRank 算法是一种用于文本的基于图的排序算法,其基本思想来源于谷歌的 PageRank算法,通过把文本分割成若干组成单元(句子),构建节点连接图,用句子之间的相似度作为边的权重,通过循环迭代 ...

  6. 自然语言处理工具hanlp关键词提取图解TextRank算法

    看一个博主(亚当-adam)的关于hanlp关键词提取算法TextRank的文章,还是非常好的一篇实操经验分享,分享一下给各位需要的朋友一起学习一下! TextRank是在Google的PageRan ...

  7. TextRank:关键词提取算法中的PageRank

    很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank [ ...

  8. 关键词提取算法TextRank

    很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank. ...

  9. 关键字提取算法TF-IDF和TextRank(python3)————实现TF-IDF并jieba中的TF-IDF对比,使用jieba中的实现TextRank

    关键词:    TF-IDF实现.TextRank.jieba.关键词提取数据来源:    语料数据来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据    数据处 ...

随机推荐

  1. Confluence 6 空间的权限是附加的

    空间的权限是附加的.如果一个用户以个人的方式或者以一个用户组成员的方式赋予了权限,Confluence 将会把这些权限合并在一起.  下面是这个概念的示例... Sasha 是 confluence- ...

  2. stylus笔记

    Stylus介绍及特点 基于Node.js的css的预处理框架,其本质上做的事情与 Sass/LESS 等类似, 可以以近似脚本的方式去写CSS代码,创建健壮的.动态的.富有表现力的CSS,默认使用 ...

  3. VBA find查找行号和列号的方法

    ).Worksheets(1).Range("b:b").Find("*", , , , , xlPrevious).Row)'查找最大行号 ).Workshe ...

  4. QQ企业邮箱接口

    我推荐的这篇文章很好:http://wenku.baidu.com/link?url=KQIMyrECGb8GS_0fag4PRG64M8Z7wOLbsU1f3BhydXAyYJDC2JMHEuVcy ...

  5. springMVC Model ModelMap 和 ModelAndView的区别(转)

    原文地址:springMVC Model ModelMap 和 ModelAndView的区别 近来在看代码,发现controller里有不同的处理返回数据的方式,而自己一直在用ModelAndVie ...

  6. [CodeForces - 197E] E - Paint Tree

    E - Paint Tree You are given a tree with n vertexes and n points on a plane, no three points lie on ...

  7. Legal or Not (判断是否存在环)

    Legal or Not Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total ...

  8. Python面向对象之继承

    前言: 继承是面向对象的3大特性之一,对于继承一点要注意一下4点. 一.基本查找 如果子类继承了父类,子类的实例化对象,没有的方法和属性会去父类找 class Parent(object): #父类 ...

  9. ONVIF协议学习笔记

    一.理解 1.1 技术理解 ONVIF = 服务端 + 客户端 =(Web Services + RTSP)+ 客户端 = ((WSDL + SOAP) + RTSP) + 客户端 WSDL是服务端用 ...

  10. mp4、AAC数据格式、解析文件的创建修改时间

    AAC文件 资料: http://blog.csdn.net/u013427969/article/details/53091594 http://blog.chinaunix.net/uid-260 ...