题意:定义斐波那契字符串为:

  • $f_1 = $ "a"
  • \(f_2 =\) "b"
  • \(f_n = f_{n-1} + f_{n-2}, \, n > 2\)

例如,$f_3 = $ “ba”。

有\(m\)次询问,第\(i\)次给出一个字符串\(s_i\),问\(s_i\)在\(f_n\)中的出现次数。

\(m \leq 10^4, \, n \leq 10^{18}, \, \sum|s_i| \leq 10^5\)

主要问题在与\(f_p\)与\(f_{p-1}\)拼接时,\(f_p\)的某个后缀与\(f_{p-1}\)的某个前缀可能恰好拼成\(s_i\),即产生额外的出现次数。当\(|f_p|\)与\(|f_{p-1}|\)都大于等于\(|s_i|\)时,这个数值就等于\(f_{n}\)长度为\(|s_i|-1\)的后缀与\(f_{p-1}\)长度为\(|s_i|-1\)的前缀组成的字符串中\(s_i\)的出现次数。

我们设\(f_{p-1}\)长度为\(|s_i|-1\)的前缀为\(a\),长度为\(|s_i|-1\)的后缀为\(b\),\(f_{p}\)长度为\(|s_i|-1\)的前缀为\(a\),长度为\(|s_i|-1\)的后缀为\(c\)。我们观察发现:

| | 长度为\(|s_i|-1\)的前缀 | 长度为\(|s_i|-1\)的后缀 | 产生额外贡献的字符串 |

| ------------ | --------------------- | --------------------- | -------------------- |

| \(f_{p-1}\) | \(a\) | \(b\) | |

| \(f_p\) | \(a\) | \(c\) | \(ca\) |

| \(f_{p+1}\) | \(a\) | \(b\) | \(ba\) |

| \(f_{p+2}\) | \(a\) | \(c\) | \(ca\) |

| \(f_{p+3}\) | \(a\) | \(b\) | \(ba\) |

| …… | …… | …… | …… |

| \(f_{p+2k}\) | \(a\) | \(c\) | \(ca\) |

| \(f_{p+2k+1}\) | \(a\) | \(b\) | \(ba\) |

我们设\(s_i\)在\(ca\)中的出现次数为\(n_c\),在\(ba\)中的出现次数为\(n_b\),\(O_n\)表示\(s_i\)在\(f_{n+p}\)中的出现次数。

那么,容易得到

\[O_n = O_{n-1} + O_{n-2} + \begin{cases} n_c, & \text {if $ n\mod 2 = 0$} \\ n_b, & \text{if $n \mod 2 = 1$}\end{cases}
\]

考虑拆分贡献,即设\(A_n\),\(B_n\),\(C_n\)分别表示\(f_n\)中,\(s_i\)在\(f_p\)和\(f_{p+1}\)中的出现次数,在所有\(ba\)中的出现次数,在所有\(ca\)中的出现次数。那么,我们有

  • \(O_n = A_n + B_n \times n_b + C_n \times n_c\)
  • \(A_n = A_{n-1} + A_{n-2}\)
  • \(B_n = B_{n-1} + B_{n-2} + [n \mod 2 = 1] = B_{n-1} + B_{n-2} + \frac {1 - (-1)^n} {2}\)
  • \(C_n = C_{n-1} + C_{n-2} + [n \mod 2 = 0] = C_{n-1} + C_{n-2} + \frac {1 + (-1)^n} {2}\)
  • \(B_0 = B_1 = C_0 = C_1 = 0\)

其中,\(A_n\)在我们计算出\(A_0\)和\(A_1\)后,用矩阵快速幂得到。故我们只用考虑\(B_n\)和\(C_n\)这两个类似的数列。

通过使用OEIS或其他的数列求解方法,我们得到\(B_n = F_{n-1} - \frac {1+(-1)^n}{2}\),以及\(C_n = F_{n} - \frac{1 - (-1)^n}{2}\)。其中,\(F_n\)为第\(n\)个斐波那契数。它们同样可以用矩阵快速幂求出。

时间复杂度\(O(\sum|s_i| + m \log n )\)。

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 30010, MAX = 200000, MOD = 1000000007;
string fib[N];
int n,m,len,cnt,lef[N],nex[MAX + 10];
char tmp[MAX + 10];
string a,b,c,tp;
struct matrix {
int mat[3][3];
matrix() {
memset(mat,0,sizeof mat);
}
matrix operator * (const matrix& x) const {
matrix ret = matrix();
for (int k = 1 ; k <= 2 ; ++ k)
for (int i = 1 ; i <= 2 ; ++ i)
for (int j = 1 ; j <= 2 ; ++ j)
(ret.mat[i][j] += 1ll * mat[i][k] * x.mat[k][j] % MOD) %= MOD;
return ret;
}
};
matrix bas;
matrix power(matrix a,int b) {
matrix ret = matrix();
ret.mat[1][1] = ret.mat[2][2] = 1;
while (b) {
if (b&1) ret = ret * a;
a = a * a;
b >>= 1;
}
return ret;
}
int getfib(int x) {
matrix ret = power(bas,x);
return ret.mat[1][2];
}
int getnum() {
int ret = 0;
for (int i = 0, j = 0 ; i < (int)tp.length() ; ++ i) {
while (j >= 0 && tmp[j+1] != tp[i])
j = nex[j];
++ j;
if (j == len) ++ ret, j = nex[j];
}
return ret;
}
int solve() {
nex[0] = -1;
for (int i = 2, j = 0 ; i <= len ; ++ i) {
while (j >= 0 && tmp[j+1] != tmp[i])
j = nex[j];
nex[i] = ++j;
}
int p = lower_bound(lef+1,lef+cnt+1,len) - lef;
++ p;
if (n <= p+1) {
tp = fib[n];
return getnum();
}
a = fib[p].substr(0,len-1);
b = fib[p].substr(lef[p] - len+1,len-1);
c = fib[p+1].substr(lef[p+1] - len+1,len-1);
int nb, nc, n0, n1, pos = n - p, ret = 0;
tp = b + a;
nb = getnum();
tp = c + a;
nc = getnum();
tp = fib[p];
n0 = getnum();
tp = fib[p+1];
n1 = getnum();
(ret += 1ll * (getfib(pos) - (pos&1)) * nc % MOD) %= MOD;
(ret += 1ll * (getfib(pos-1) - 1 + (pos&1)) * nb % MOD) %= MOD;
matrix sta = matrix();
sta.mat[1][1] = n1;
sta.mat[1][2] = sta.mat[2][1] = n0;
sta = sta * power(bas,pos);
(ret += sta.mat[1][2]) %= MOD;
ret = (ret % MOD + MOD) % MOD;
return ret;
}
signed main() {
fib[1] = "a";
fib[2] = "b";
for (int i = 3 ; ; ++ i) {
fib[i] = fib[i-1] + fib[i-2];
lef[i] = fib[i].length();
cnt = i;
if (lef[i-1] >= MAX) break;
}
bas.mat[1][1] = bas.mat[1][2] = bas.mat[2][1] = 1;
cin >> n >> m;
for (int i = 1 ; i <= m ; ++ i) {
scanf("%s",tmp+1);
len = strlen(tmp+1);
cout << solve() << endl;
}
return 0;
}

小结:用一种不大简单的做法做出了这道题。思考时间过长,并且依赖网站来求解数列,这是做此题时体现出的不足之处。

【做题】CF177G2. Fibonacci Strings——思维+数列的更多相关文章

  1. 【做题】NOWCODER142A Ternary String——数列&欧拉定理

    题意:你有一个长度为\(n\),且仅由012构成的字符串.每经过一秒,这个字符串所有1后面会插入一个0,所有2后面会插入一个1,然后会删除第一个元素.求这个字符串需要多少秒变为空串,对\(10^9+7 ...

  2. noip做题记录+挑战一句话题解?

    因为灵巧实在太弱辽不得不做点noip续下命QQAQQQ 2018 积木大赛/铺设道路 傻逼原题? 然后傻逼的我居然检查了半天是不是有陷阱最后花了差不多一个小时才做掉我做过的原题...真的傻逼了我:( ...

  3. CodeM美团点评编程大赛复赛 做题感悟&题解

    [T1] [简要题意]   长度为N的括号序列,随机确定括号的方向:对于一个已确定的序列,每次消除相邻的左右括号(右左不行),消除后可以进一步合并和消除直到不能消为止.求剩下的括号的期望.\(N \l ...

  4. (luogu1704)寻找最优美做题曲线 [TPLY]

    寻找最优美做题曲线 题目链接:https://www.luogu.org/problemnew/show/P1704 题目大意: 求包含指定点的最长不降子序列(严格递增) 题解 首先我们发现 一个序列 ...

  5. AtCoder Grand Contest 1~10 做题小记

    原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-Grand-Contest-from-1-to-10.html 考虑到博客内容较多,编辑不方便的情 ...

  6. 课后选做题-MyOD

    课后选做题-MyOD od命令的了解 功能 od命令用于将指定文件内容以八进制.十进制.十六进制.浮点格式或ASCII编码字符方式显示,通常用于显示或查看文件中不能直接显示在终端的字符.od命令系统默 ...

  7. BJOI做题记录

    BJOI做题记录 终于想起还要做一下历年省选题了2333 然而咕了的还是比做了的多2333 LOJ #2178. 「BJOI2017」机动训练 咕了. LOJ #2179. 「BJOI2017」树的难 ...

  8. 【做题记录】AtCoder AGC做题记录

    做一下AtCoder的AGC锻炼一下思维吧 目前已做题数: 75 总共题数: 239 每一场比赛后面的字母是做完的题,括号里是写完题解的题 AGC001: ABCDEF (DEF) AGC002: A ...

  9. FJOI2017前做题记录

    FJOI2017前做题记录 2017-04-15 [ZJOI2017] 树状数组 问题转化后,变成区间随机将一个数异或一,询问两个位置的值相等的概率.(注意特判询问有一个区间的左端点为1的情况,因为题 ...

随机推荐

  1. Unity shader学习之轮廓效果

    将物体描一层边可以使游戏看起来具有卡通风格,一种简单的实现方法如下: 将物体渲染2次,即使用2个通道. 第一个通道将顶点沿法线(或中心点到顶点的方向)做一个偏移,即将模型扩大一点,并将颜色渲染成轮廓的 ...

  2. python读取大文件

    最近在学习python的过程中接触到了python对文件的读取.python读取文件一般情况是利用open()函数以及read()函数来完成: f = open(filename,'r') f.rea ...

  3. 面向对象的多态性(C++)

    以C++为例三大特效:封装.继承.多态,面向对象的编程语言都具有这些特性. 那么本节来谈谈多态性,尽量说的简单些容易理解! 多态什么意思?即运行时多态,以相同的方式处理不同类型的对象,产生不同的结果! ...

  4. hdu5302 构造

    题意:给你一个无向图,它的边要么是黑色要么是白色,且图上的每个点最多与两个黑边两个白边相连.现在,Demon将图分成两部分,一部分包含所有的黑边,另一部分包括所有的白边,给你白边图中度为0的点的数量w ...

  5. uva 1416 Warfare And Logistics

    题意: 给出一个无向图,定义这个无向图的花费是 其中path(i,j),是i到j的最短路. 去掉其中一条边之后,花费为c’,问c’ – c的最大值,输出c和c’. 思路: 枚举每条边,每次把这条边去掉 ...

  6. Swift之关键字使用(I)

    static和class的使用 static 使用 在非class的类型(包括enum和struct)中,一般使用static来描述类型作用域.在这个类型中,我们可以在类型范围中声明并使用存储属性,计 ...

  7. OBO文件格式1.2

    该文件每一行都是一个键值对,基本格式为:    键: 值!注释 总体结构:    文件头    !包含若干行总体说明    词条1    ![词条类型]占第一行,后跟若干行说明    词条2    ! ...

  8. js函数常见的写法以及调用方法

    写在前面:本文详细的介绍了5中js函数常见的写法以及调用的方法,平时看别人代码的时候总是看到各种不同风格的js函数的写法.不明不白的,找了点资料,做了个总结,需要的小伙伴可以看看,做个参考.1.常规写 ...

  9. CRM 权限设置 ss

    表结构的设计 权限表 url -url地址的正则表达式 ^$ title - 标题 角色表 name - 角色名称 permissions 多对多关联权限表 (权限和角色的关系表) 用户表 name ...

  10. GUI颜色、字体设置对话框

    %颜色设置对话框 uisetcolor %c 红色 c=uisetcolor %默认规定颜色 c=uisetcolor([ ]); %设置曲线颜色 h = plot([:]); c = uisetco ...