【HDOJ3861】【Tarjan缩点+最小路径覆盖】
http://acm.hdu.edu.cn/showproblem.php?pid=3861
The King’s Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3544 Accepted Submission(s): 1256
Now the king asks for your help, he wants to know the least number of states he have to divide the kingdom into.
The first line for each case contains two integers n, m(0 < n <= 5000,0 <= m <= 100000), the number of cities and roads in the kingdom. The next m lines each contains two integers u and v (1 <= u, v <= n), indicating that there is a road going from city u to city v.
3 2
1 2
1 3
定义:
最小路径覆盖:在图中找一些路径(路径数最少),使之覆盖了图中所有的顶点,且每个顶点有且仅和一条路径有关联。
最小顶点覆盖:在图中找一些点(顶点数最少),使之覆盖了图中所有的边,每条边至少和一个顶点有关联。
二分图:最小顶点覆盖=最大匹配数。
最小路径覆盖=顶点数-最大匹配数。
//Wannafly挑战赛14 C https://www.nowcoder.com/acm/contest/81/C
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
const int maxn=;
struct edge{
int from;
int to;
int next;
}EDGE[maxn];
vector<int>vc[maxn];
int head[maxn],dfn[maxn],vis[maxn],vvis[maxn],used[maxn],low[maxn],col[maxn],in[maxn],out[maxn],en[maxn],stk[maxn];//各个变量的意义可参照上篇博客
int edge_cnt=,tot1=,tot2=,scc_cnt=,tot0=;
void add(int x,int y)
{
EDGE[edge_cnt].from=x;
EDGE[edge_cnt].to=y;
EDGE[edge_cnt].next=head[x];
head[x]=edge_cnt++;
}
bool find(int x)
{
for(int i = head[x] ; i != - ; i=EDGE[i].next)
{
if(!used[EDGE[i].to])
{
used[EDGE[i].to]=;
if(!vvis[EDGE[i].to]||find(vvis[EDGE[i].to]))
{
vvis[EDGE[i].to]=x;
return ;
}
}
}
return ;
}
void Tarjan(int u)
{
low[u]=dfn[u]=++tot1;//注意tot1的初值必须是1【因为dfn必须为正数】,所以这里使用++tot1而不用tot1++;
vis[u]=;
stk[++tot2]=u;
for(int i = head[u]; i != - ; i = EDGE[i].next)
{
if(!dfn[EDGE[i].to]){
Tarjan(EDGE[i].to);
low[u]=min(low[u],low[EDGE[i].to]);
}
else if(vis[EDGE[i].to]){
low[u]=min(low[u],low[EDGE[i].to]);
}
}
if(low[u]==dfn[u]){
int xx;
scc_cnt++;
do{
xx=stk[tot2--];
vc[scc_cnt].push_back(xx);
col[xx]=scc_cnt;
vis[xx]=;
}while(xx!=u);
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
edge_cnt=,tot1=,tot2=,scc_cnt=,tot0=;
scc_cnt=;
int n,m;
scanf("%d%d",&n,&m);
memset(head,-,sizeof(head));
memset(stk,,sizeof(stk));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(col,,sizeof(col));
memset(vis,,sizeof(vis));
memset(vvis,,sizeof(vvis));
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
for(int i = ; i <= n; i++)
{
if(!dfn[i])Tarjan(i);
}
memset(head,-,sizeof(head));
int orz0=edge_cnt;
// cout << "$$$\n";
edge_cnt=;
for(int i = ; i < orz0 ; i++)
{
if(col[EDGE[i].from]!=col[EDGE[i].to])
{
add(col[EDGE[i].from],col[EDGE[i].to]);
// cout << col[EDGE[i].from] << endl;
}
}
// cout << "###\n";
int sum=;
//int sum1=0,sum2=0;
for(int i = ; i <= scc_cnt ; i++)
{
memset(used,,sizeof(used));
if(find(i))sum++;
}
cout << scc_cnt-sum <<endl;
for(int i = ; i <= scc_cnt ; i++)
vc[i].clear();
}
return ;
}
/*4 5
1 3
2 4
4 2
1 4
2 1*/
【HDOJ3861】【Tarjan缩点+最小路径覆盖】的更多相关文章
- HDU 3861 The King’s Problem(tarjan缩点+最小路径覆盖:sig-最大二分匹配数,经典题)
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- 缩点+最小路径覆盖 hdu 3861
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意:输入t,表示t个样例.接下来每个样例第一行有两个数n,m表示点数和有向边的数量,接下来输入 ...
- Graph_Master(连通分量_C_Trajan缩点+最小路径覆盖)
hdu_3861 题目大意:给定一张有向图,若<u,v>可达(u可以走到v,或者 v可以走到u),则<u,v>需被划分在统一城邦,问最小划分城邦数. 题解:比较裸的题,可以看出 ...
- Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖
题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...
- Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖
题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...
- HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意: 国王要对n个城市进行规划,将这些城市分成若干个城市,强连通的城市必须处于一个州,另外一个州内的任意 ...
- HDU 3861.The King’s Problem 强联通分量+最小路径覆盖
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- 【HDU3861 强连通分量缩点+二分图最小路径覆盖】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意:一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.有边u到v以及有 ...
- hdoj 3861 The King’s Problem【强连通缩点建图&&最小路径覆盖】
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
随机推荐
- Ubuntu16.10下使用VSCode开发.netcore
按照通常的套路,首先创建一个空白的解决方案,需要用到.netcore sdk命令: dotnet new sln -o dotnetcore_tutrorial 这个时候可以看到在目标目录下生成了一个 ...
- 逆袭之旅DAY16.东软实训.Oracle.序列
2018-07-12 14:07:44 序列 序列1.创建序列create sequence 序列名 [increment by n] ---步长 [start with n] ---序列的起始值 序 ...
- 《Java面向对象编程》
<Java面向对象编程> 第11章 对象的生命周期 11.1 创建对象的方式 用new语句创建对象 运用反射手段,调用java.lang.Class 或者 java.lang.Const ...
- Kafka.net使用编程入门(三)
这个世界既不是有钱人的世界,也不是有权人的世界,它是有心人的世界. 一些有用的命令 1.列出主题:kafka-topics.bat --list --zookeeper localhost:2181 ...
- iPhoneX && iOS11 适配
最近实在是蛮闲的,这都得益于苹果爸爸给力的审核,已经半个月了(委屈) 这个问题已经很久了,但是还是希望分享给各位,当然网上的教程的确很多: 1.automaticallyAdjustsScrollVi ...
- linux 系统监控、诊断工具之 lsof 用法简介
1.lsof 简介 lsof 是 Linux 下的一个非常实用的系统级的监控.诊断工具. 它的意思是 List Open Files,很容易你就记住了它是 "ls + of"的组合 ...
- tp配置
<?php// +----------------------------------------------------------------------// | ThinkPHP [ WE ...
- a recipe kindly provided by Dimas for kikuchi
https://sianipar17.com/2017/12/14/tutorial-for-teleseismic-body-wave-inversion-program/
- elk之elasticsearch安装
环境: centos7 jdk8 参考: https://www.elastic.co/guide/en/elasticsearch/reference/current/rpm.htmlhttp:// ...
- [Paper] Selection and replacement algorithm for memory performance improvement in Spark
Summary Spark does not have a good mechanism to select reasonable RDDs to cache their partitions in ...