题意

Dynamic Rankings


Time Limit: 10 Seconds
    
Memory Limit: 32768 KB


The Company Dynamic Rankings has developed a new kind of computer that is no
longer satisfied with the query like to simply find the k-th smallest number
of the given N numbers. They have developed a more powerful system such that
for N numbers a[1], a[2], ..., a[N], you can ask it like: what is the k-th smallest
number of a[i], a[i+1], ..., a[j]? (For some i<=j, 0<k<=j+1-i that
you have given to it). More powerful, you can even change the value of some
a[i], and continue to query, all the same.



Your task is to write a program for this computer, which



- Reads N numbers from the input (1 <= N <= 50,000)



- Processes M instructions of the input (1 <= M <= 10,000). These instructions
include querying the k-th smallest number of a[i], a[i+1], ..., a[j] and change
some a[i] to t.

Input



The first line of the input is a single number X (0 < X <= 4), the number
of the test cases of the input. Then X blocks each represent a single test case.



The first line of each block contains two integers N and M, representing N numbers
and M instruction. It is followed by N lines. The (i+1)-th line represents the
number a[i]. Then M lines that is in the following format



Q i j k or

C i t



It represents to query the k-th number of a[i], a[i+1], ..., a[j] and change
some a[i] to t, respectively. It is guaranteed that at any time of the operation.
Any number a[i] is a non-negative integer that is less than 1,000,000,000.



There're NO breakline between two continuous test cases.

Output



For each querying operation, output one integer to represent the result. (i.e.
the k-th smallest number of a[i], a[i+1],..., a[j])



There're NO breakline between two continuous test cases.

Sample Input



2

5 3

3 2 1 4 7

Q 1 4 3

C 2 6

Q 2 5 3

5 3

3 2 1 4 7

Q 1 4 3

C 2 6

Q 2 5 3

Sample Output



3

6

3

6


(adviser)


Site: http://zhuzeyuan.hp.infoseek.co.jp/index.files/our_contest_20040619.htm


Author: XIN, Tao

Source: Online Contest of Christopher's Adventure

Submit

Status

分析

跟POJ2104 Kth Number差不多,只不过多了一个单点修改。那么把单点修改拆成删除和插入两个操作就好了。

时间复杂度\(O((N+2*M) \log SIZE \log N)\)

代码

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
    rg T data=0,w=1;rg char ch=getchar();
    while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
    while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
    return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;

co int N=1e5+1,INF=1e9;
struct rec {int op,x,y,z;}q[3*N],lq[3*N],rq[3*N];
int T,n,m,t,p,a[N],c[N],ans[N];
int ask(int x){
    int y=0;
    for(;x;x-=x&-x) y+=c[x];
    return y;
}
void change(int x,int y){
    for(;x<=n;x+=x&-x) c[x]+=y;
}
void solve(int lval,int rval,int st,int ed){
    if(st>ed) return;
    if(lval==rval){
        for(int i=st;i<=ed;++i)
            if(q[i].op>0) ans[q[i].op]=lval;
        return;
    }
    int mid=lval+rval>>1;
    int lt=0,rt=0;
    for(int i=st;i<=ed;++i){
        if(q[i].op<=0){
            if(q[i].y<=mid) change(q[i].x,q[i].z),lq[++lt]=q[i];
            else rq[++rt]=q[i];
        }
        else{
            int cnt=ask(q[i].y)-ask(q[i].x-1);
            if(cnt>=q[i].z) lq[++lt]=q[i];
            else q[i].z-=cnt,rq[++rt]=q[i];
        }
    }
    for(int i=ed;i>=st;--i)
        if(q[i].op<=0&&q[i].y<=mid) change(q[i].x,-q[i].z);
    for(int i=1;i<=lt;++i) q[st+i-1]=lq[i];
    for(int i=1;i<=rt;++i) q[st+lt+i-1]=rq[i];
    solve(lval,mid,st,st+lt-1);
    solve(mid+1,rval,st+lt,ed);
}
int main(){
//  freopen(".in","r",stdin),freopen(".out","w",stdout);
    read(T);
    while(T--){
        read(n),read(m);
        t=p=0;
        for(int i=1;i<=n;++i){
            read(a[i]);
            q[++t].op=0,q[t].x=i,q[t].y=a[i],q[t].z=1;
        }
        for(int i=1;i<=m;++i){
            static char op[2];scanf("%s",op);
            if(op[0]=='Q'){
                static int l,r,k;read(l),read(r),read(k);
                q[++t].op=++p,q[t].x=l,q[t].y=r,q[t].z=k;
            }
            else{
                static int x,y;read(x),read(y);
                q[++t].op=-1,q[t].x=x,q[t].y=a[x],q[t].z=-1;
                q[++t].op=0,q[t].x=x,q[t].y=y,q[t].z=1;
                a[x]=y;
            }
        }
        solve(0,INF,1,t);
        for(int i=1;i<=p;++i) printf("%d\n",ans[i]);
    }
    return 0;
}

ZOJ2112 Dynamic Rankings的更多相关文章

  1. [bzoj1901][zoj2112][Dynamic Rankings] (整体二分+树状数组 or 动态开点线段树 or 主席树)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  2. ZOJ2112 Dynamic Rankings (线段树套平衡树)(主席树)

    The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with t ...

  3. zoj2112 Dynamic Rankings (主席树 || 树套树)

    The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with t ...

  4. ZOJ2112 Dynamic Rankings(整体二分)

    今天学习了一个奇技淫巧--整体二分.关于整体二分的一些理论性的东西,可以参见XRH的<浅谈数据结构题的几个非经典解法>.然后下面是一些个人的心得体会吧,写下来希望加深一下自己的理解,或者如 ...

  5. ZOJ2112 Dynamic Rankings 动态区间第K最值 平方分割

    有了上一题的经验(POJ的静态区间第K最值)再解决这道题就轻松多了 空间5256KB,时间3330ms,如果把动态开点的平衡树换成数组模拟的话应该会更快 之所以选择了平方分割而不是树套树,不仅是所谓趁 ...

  6. bzoj1901&zoj2112&cogs257 Dynamic Rankings(动态排名系统)

    bzoj1901&zoj2112&cogs257 Dynamic Rankings(动态排名系统) cogs zoj bzoj-权限 题解 bzoj和zoj都是骗访问量的233,我没有 ...

  7. BZOJ 1901: Zju2112 Dynamic Rankings[带修改的主席树]【学习笔记】

    1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 7143  Solved: 2968[Su ...

  8. ZOJ 2112 Dynamic Rankings (动态第k大,树状数组套主席树)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  9. [BZOJ1901]Zju2112 Dynamic Rankings

    [BZOJ1901]Zju2112 Dynamic Rankings 试题描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i ...

随机推荐

  1. 重写equals() 和 hashCode()方法

    什么情况下需要重写呢? 比如去重操作时, 有时候往Set集合存放对象User,我们User类的字段太多时,比如有50个字段, 判断两个User对象相同,不需要判断它们所有字段都相同,只需要判断它们的某 ...

  2. PC/FORTH 循环

    body, table{font-family: 微软雅黑} table{border-collapse: collapse; border: solid gray; border-width: 2p ...

  3. 最短路径:Dijkstra & Floyd 算法图解,c++描述

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. 四. Python基础(4)--语法

    四. Python基础(4)--语法 1 ● 比较几种实现循环的代码 i = 1 sum = 0 while i <= 10: # 循环10-1+1=10次     sum += i     i ...

  5. matlabR2017安装

    安装教程参考: https://blog.csdn.net/m0_37638031/article/details/78982498

  6. SQL--数据库--基本操作

    SQL基本操作 基本操作:CRUD 将SQL的基本操作根据操作对象进行分类:库操作,表操作(字段),数据操作 库操作 对数据库的增删改查 新增数据库 基本语法Create database 数据库名字 ...

  7. Beta阶段冲刺---Day2

    一.Daily Scrum Meeting照片 二.今天冲刺情况反馈 1.昨天已完成的工作· 题目切换的改进· 支持退格操作 2.今天计划完成的工作· 数字以扑克牌的形式给出· 答案的乘除符号与游戏中 ...

  8. python基础操作以及其常用内置方法

    #可变类型: 值变了,但是id没有变,证明没有生成新的值而是在改变原值,原值是可变类型#不可变类型:值变了,id也跟着变,证明是生成了新的值而不是在改变原值,原值是不可变 # x=10# print( ...

  9. django中scrf的实现机制

    第一步:django第一次响应来自某个客户端的请求时,后端随机产生一个token值,把这个token保存在SESSION状态中,后端把这个token放到cookie中交给前端页面. 第二步:下次前端需 ...

  10. ubantu 安装nginx HTTP反向代理服务器

    Nginx发音的“engine x”是一个免费的开源高性能HTTP和反向代理服务器,负责处理互联网上一些最大的网站的负载. 本教程将概述在Ubuntu 18.04机器上安装和管理Nginx的步骤. 安 ...