luogu P3924 康娜的线段树
我们可以画图找规律
这里没图,要看图可以去看M_sea dalao的题解(逃
可以发现单个节点\(i\)对答案的贡献为该节点的点权\(*\frac{1}{2^{dep_i}}\)(\(dep_i\)为从上往下\(i\)节点所在的层数-1,也就是深度,令根节点的\(dep=0\))
我们可以发现,所有叶子节点的深度都是最大深度(记为\(ma\))或者最大深度-1,所以除开最下面一层,从上往下第\(i\)层的贡献都是序列中所有数之和\(*\frac{1}{2^{i-1}}\),最下面一层的每个叶子节点的贡献就是点权\(*\frac{1}{2^{ma}}\).为了方便,下面算答案时把所有数\(*2^{ma}\),输出的时候再除掉
我们先预处理最初的答案,记\(b=\sum_{j=1}^{ma}2^j\),序列中第\(i\)个数的贡献为\(a_i*(b+[dep_{i\text{在线段树中对应的叶子节点}}=ma])\)(如果是最后一层就多加上\(a_i\)是吧) 这里字不太好看先憋着
每次的区间加法,记\(c=\)区间内深度为\(ma\)的叶子节点个数,可以发现答案加上了\(x*(r-l+1)*b+x*c\)
最后答案要\(/2^{ma}*qwq\),并且注意将\(2^{ma}\)和\(qwq\)约分,不然会爆\(long\ long\)
我做题时居然那啥到强行用树状数组求前缀和qwq
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=1000000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
#define lc (o<<1)
#define rc ((o<<1)|1)
#define mid ((l+r)>>1)
int n,m,a[N],mm;
LL qwq,b=1,ans,c[N];
void init(int k,int l,int r)
{
if(l==r){mm=max(mm,a[l]=k);return;}
init(k+1,l,mid),init(k+1,mid+1,r);
}
il LL gcd(LL a,LL b){return b?gcd(b,a%b):a;}
int main()
{
n=rd(),m=rd(),qwq=rd();
init(0,1,n);
b=(1ll<<(mm+1))-2; //这就是题解中的b
for(re int i=1;i<=n;i++)
{
LL x=rd();
ans+=x*b;
c[i]+=c[i-1];
if(a[i]==mm) ++c[i],ans+=x;
}
mm=1ll<<mm;
LL gg=gcd(mm,qwq);mm/=gg,qwq/=gg;
for(re int i=1;i<=m;i++)
{
int l=rd(),r=rd();
LL x=rd();
ans+=1ll*(r-l+1)*x*b+(c[r]-c[l-1])*x;
printf("%lld\n",ans/mm*qwq);
}
return 0;
}
luogu P3924 康娜的线段树的更多相关文章
- P3924 康娜的线段树(期望)
P3924 康娜的线段树 看起来$O(nlogn)$可过其实由于巨大常数是无法通过的 $O(nlogn)$:70pts 我们手玩样例发现 线段树上某个节点的期望值$f[o]=(f[lc]+f[rc]) ...
- P3924 康娜的线段树
P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的"魔法"产生了浓厚的兴趣,于是小林开始教她OI. 今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以 ...
- 洛谷 P3924 康娜的线段树 解题报告
P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的"魔法"产生了浓厚的兴趣,于是小林开始教她\(OI\). 今天康娜学习了一种叫做线段树的神奇魔法,这种 ...
- 洛谷 P3924 康娜的线段树
P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的“魔法”产生了浓厚的兴趣,于是小林开始教她OI. 今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以维护一段区间的信息, ...
- 洛谷P3924 康娜的线段树(期望 前缀和)
题意 题目链接 Sol 思路就是根据期望的线性性直接拿前缀和算贡献.. 这题输出的时候是不需要约分的qwq 如果你和我一样为了AC不追求效率的话直接#define int __int128就行了.. ...
- luogu P2574 XOR的艺术 (线段树)
luogu P2574 XOR的艺术 (线段树) 算是比较简单的线段树. 当区间修改时.\(1 xor 1 = 0,0 xor 1 = 1\)所以就是区间元素个数减去以前的\(1\)的个数就是现在\( ...
- 【原创】洛谷 LUOGU P3373 【模板】线段树2
P3373 [模板]线段树 2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第 ...
- 【原创】洛谷 LUOGU P3372 【模板】线段树1
P3372 [模板]线段树 1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别 ...
- Luogu P1198 BZOJ 1012 最大数 (线段树)
手动博客搬家: 本文发表于20170821 14:32:05, 原地址https://blog.csdn.net/suncongbo/article/details/77449455 URL: (Lu ...
随机推荐
- Fiddler4入门——手机抓包
一.下载工具包 百度搜索”fiddler 下载“ ,安装最新版本 下载的软件安装包为“fiddler_4.6.20171.26113_setup.exe”格式,双击安装.安装成功,在“开始”-“所有程 ...
- python 从filelist.txt中拷贝文件到另一文件夹中
#! python #coding:utf-8 ##!/usr/bin/python # Filename : fileCp.py import sys import os import shutil ...
- 一对一 只需将另一个表的id设置为主键和外键即可
一对一 只需将另一个表的id设置为主键和外键即可
- iOS 页面之间的转场动画控制器间的转换
CATransition类实现层的转场动画.你可以从一组预定义的转换或者通过提供定制的CIFilter实例来指定转场效果. 例如:控制器之间的跳转 LoginViewController *myVC ...
- 使用正则真正的修改TP5的config.php文件
来源 https://www.kancloud.cn/manual/thinkphp5/118026 问题 前台传值后台使用Config::set()方法写入config.php文件,但是并没有真正的 ...
- 03 Zabbix常用的术语
03 Zabbix常用的术语 host(主机): 要监控的网络设备,可由IP或DNS名称指定 host group(主机组):主机的逻辑容器,可以包含主机和模板,但同一个组内的主机和模板不能互相链接: ...
- Python文件和异常
程序和运行时数据是在内存中驻留的,涉及到数据交换的地方,通常是磁盘.网络等,因此需要IO接口. IO编程中,Stream(流)是一个很重要的概念,可以把流想象成一个水管,数据就是水管里的水,但是只能单 ...
- 将文件转换为base64字符串,然后还原
package com.um.banks.xinlian.utils; import java.io.File; import java.io.FileInputStream; import java ...
- A1024. Palindromic Number
A number that will be the same when it is written forwards or backwards is known as a Palindromic Nu ...
- @Value加载classpath下的文件
maven工程中,要加载classpath下的文件并以InputStream的形式返回,通常使用的方法是 InputStream inputStream = Test.class.getClassLo ...