#encoding:utf-8
import pandas as pd
import numpy as np
from sklearn import datasets,linear_model
from sklearn.metrics import roc_curve,auc
import pylab as pl
from matplotlib.pyplot import plot def confusionMatrix(predicted,actual,threshold):
if len(predicted)!=len(actual):return -1
tp = 0.0
fp = 0.0
tn = 0.0
fn = 0.0
for i in range(len(actual)):
if actual[i]>0.5:
if predicted[i]>threshold:
tp += 1.0
else:
fn += 1.0
else:
if predicted[i]<threshold:
tn += 1.0
else:
fp += 1.0
rtn = [fp,fn,fp,tn]
return rtn
#获取数据
rockdata = open('sonar.all-data')
xList = []
labels = []
#将标签转换成数值,M转换成1.0,R转换为0.0
for line in rockdata:
row = line.strip().split(",")
if(row[-1] =='M'):
labels.append(1.0)
else:
labels.append(0.0)
row.pop()
floatRow = [float(num) for num in row]
xList.append(floatRow)
print labels
#获取数据的行数,通过对3的求余,将数据划分为2个子集,1/3的测试集,2/3的训练集
indices = range(len(xList))
xListTest = [xList[i] for i in indices if i%3==0]
xListTrain = [xList[i] for i in indices if i%3!=0]
labelsTest = [labels[i] for i in indices if i%3==0]
labelsTrain = [labels[i] for i in indices if i%3!=0]
#将列表转换成数组
xTrain = np.array(xListTrain)
yTrain = np.array(labelsTrain)
xTest = np.array(xListTest)
yTest = np.array(labelsTest)
#预测模型
rocksVMinesModel = linear_model.LinearRegression()
#训练数据
rocksVMinesModel.fit(xTrain,yTrain)
# 预测训练数据
trainingPredictions = rocksVMinesModel.predict(xTrain)
print ("---------",trainingPredictions[0:5],trainingPredictions[-6:-1])
#生成训练数据的混淆矩阵
confusionMatTrain = confusionMatrix(trainingPredictions,yTrain,0.5)
print confusionMatTrain
#预测测试数据
testPredictions = rocksVMinesModel.predict(xTest)
#生成测试数据的混淆矩阵
confusionTest = confusionMatrix(testPredictions,yTest,0.5)
print confusionTest
#通过roc_curve函数计算fpt,tpr,并计算roc_auc,AUC越高代表越好
fpr,tpr,thresholds = roc_curve(yTrain,trainingPredictions)
roc_auc = auc(fpr,tpr)
print roc_auc
#生成训练集上的ROC曲线
#plot roc curve
pl.clf()#清楚图形,初始化图形的时候需要
pl.plot(fpr,tpr,label='ROC curve (area=%0.2f)' %roc_auc)#画ROC曲线
pl.plot([0,1],[0,1],'k-')#生成对角线
pl.xlim([0.0,1.0])#X轴范围
pl.ylim([0.0,1.0])#Y轴范围
pl.xlabel('False Positive Rate')#X轴标签显示
pl.ylabel('True Positive Rate')#Y轴标签显示
pl.title('In sample ROC rocks versus mines')#标题
pl.legend(loc="lower left")#图例位置
pl.show() #生成测试集上的ROC曲线
fpr,tpr,thresholds = roc_curve(yTest,testPredictions)
roc_auc = auc(fpr,tpr)
print roc_auc
#plot roc curve
pl.clf()
pl.plot(fpr,tpr,label='ROC curve (area=%0.2f)' %roc_auc)
pl.plot([0,1],[0,1],'k-')
pl.xlim([0.0,1.0])
pl.ylim([0.0,1.0])
pl.xlabel('False Positive Rate')
pl.ylabel('True Positive Rate')
pl.title('In sample ROC rocks versus mines')
pl.legend(loc="lower right")
pl.show() 训练集上的ROC曲线

测试集上的ROC曲线

												

python 随机分类的更多相关文章

  1. Python随机生成验证码的两种方法

    Python随机生成验证码的方法有很多,今天给大家列举两种,大家也可以在这个基础上进行改造,设计出适合自己的验证码方法方法一:利用range Python随机生成验证码的方法有很多,今天给大家列举两种 ...

  2. 用python随机生成数据,再插入到postgresql中

    用python随机生成学生姓名,三科成绩和班级数据,再插入到postgresql中. 模块用psycopg2 random import random import psycopg2 fname=[' ...

  3. python 文本分类

    python 文本分类 pyhton 机器学习 待续...

  4. 13、Selenium+python+API分类总结

    Selenium+python+API分类总结 http://selenium-python.readthedocs.org/index.html 分类 方法 方法描述 客户端操作 __init__( ...

  5. python随机生成个人信息

    python随机生成个人信息 #!/usr/bin/env python3 # -*- coding:utf-8 -*- import sys import random class Personal ...

  6. 【机器学习实验】学习Python来分类现实世界的数据

    引入 一个机器能够依据照片来辨别鲜花的品种吗?在机器学习角度,这事实上是一个分类问题.即机器依据不同品种鲜花的数据进行学习.使其能够对未标记的測试图片数据进行分类. 这一小节.我们还是从scikit- ...

  7. python入门-分类和回归各种初级算法

    引自:http://www.cnblogs.com/taichu/p/5251332.html ########################### #说明: # 撰写本文的原因是,笔者在研究博文“ ...

  8. python + sklearn ︱分类效果评估——acc、recall、F1、ROC、回归、距离

    之前提到过聚类之后,聚类质量的评价: 聚类︱python实现 六大 分群质量评估指标(兰德系数.互信息.轮廓系数) R语言相关分类效果评估: R语言︱分类器的性能表现评价(混淆矩阵,准确率,召回率,F ...

  9. python 多分类任务中按照类别分层采样

    在机器学习多分类任务中有时候需要针对类别进行分层采样,比如说类别不均衡的数据,这时候随机采样会造成训练集.验证集.测试集中不同类别的数据比例不一样,这是会在一定程度上影响分类器的性能的,这时候就需要进 ...

随机推荐

  1. 隐马尔科夫模型(hidden Markov model, HMM)

  2. TensorFlow基础笔记(1) 数据读取与保存

    https://zhuanlan.zhihu.com/p/27238630 WholeFileReader # 我们用一个具体的例子感受tensorflow中的数据读取.如图, # 假设我们在当前文件 ...

  3. 008Maven_建立私服

    参考博客:http://blog.csdn.net/fengspg/article/details/22507737   .1. Maven私服 关于中央仓库注意事项 l  地址: 目前来说: htt ...

  4. HDU 1284 钱币兑换问题(全然背包:入门题)

    HDU 1284 钱币兑换问题(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1284 题意: 在一个国家仅有1分,2分.3分硬币,将钱N ( ...

  5. jquery书写一个简易的二级联动

    先用php生成一个json数组示例如下 JSON_UNESCAPED_UNICODE 是对汉字进行处理的参数 然后HTML代码如下 把那个json_city赋值成我们用php生成的json即可 < ...

  6. python学习【第一篇】python介绍

    python发展历史 起源 Python的作者,Guido von Rossum,荷兰人.1982年,Guido从阿姆斯特丹大学获得了数学和计算机硕士学位.然而,尽管他算得上是一位数学家,但他更加享受 ...

  7. hdu1244(dp)

    简单dp Max Sum Plus Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  8. skeleton

    响应式模版 伯乐在线:http://hao.jobbole.com/skeleton/ cdn  : https://cdn.bootcss.com/skeleton/2.0.4/skeleton.c ...

  9. 【黑金原创教程】【Modelsim】【第三章】理想就是美丽

    声明:本文为黑金动力社区(http://www.heijin.org)原创教程,如需转载请注明出处,谢谢! 黑金动力社区2013年原创教程连载计划: http://www.cnblogs.com/al ...

  10. 【BZOJ3653】谈笑风生 离线+树状数组+DFS序

    [BZOJ3653]谈笑风生 Description 设T 为一棵有根树,我们做如下的定义: ? 设a和b为T 中的两个不同节点.如果a是b的祖先,那么称“a比b不知道高明到哪里去了”. ? 设a 和 ...