POJ2728 Desert King


Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can’t share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David’s prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4

0 0 0

0 1 1

1 1 2

1 0 3

0

Sample Output

1.000


已经确定了一个根,再选择一种优美的结构,不就是树吗(结构是树的时候代价最小),那么这道题就变成一道最优比率生成树,这个题目j就是要求Min(∑升降机成本/∑通道长度)" role="presentation">Min(∑升降机成本/∑通道长度)Min(∑升降机成本/∑通道长度),套一个板子就好啦


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=1010;
const double eps=1e-5;
const double INF=1e16;
int n;
double f[N][N],dis[N][N],x[N],y[N],z[N],minv[N];
int vis[N];
double getdis(int a,int b){
return sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
}
int check(double x){
memset(vis,0,sizeof(vis));
double sum=0;vis[1]=1;
for(int i=1;i<=n;i++)minv[i]=f[1][i]-x*dis[1][i];
for(int i=2;i<=n;i++){
double tmp=INF;int k=-1;
for(int j=2;j<=n;j++)
if(!vis[j]&&minv[j]<tmp)
k=j,tmp=minv[j];
if(k==-1)break;
vis[k]=1;
sum+=tmp;
for(int j=2;j<=n;j++)
if(!vis[j]&&f[k][j]-x*dis[k][j]<minv[j])
minv[j]=f[k][j]-x*dis[k][j];
}
return sum>=0;
}
int main(){
while(1){
scanf("%d",&n);
if(!n)break;
for(int i=1;i<=n;i++)
scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++){
dis[i][j]=dis[j][i]=getdis(i,j);
f[i][j]=f[j][i]=abs(z[i]-z[j]);
}
double l=0.0,r=100.0;
while(r-l>=eps){
double mid=(l+r)/2;
if(check(mid))l=mid;
else r=mid;
}
printf("%.3lf\n",r);
}
return 0;
}

POJ2728 Desert King 【最优比率生成树】的更多相关文章

  1. POJ2728 Desert King —— 最优比率生成树 二分法

    题目链接:http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Subm ...

  2. POJ2728 Desert King 最优比率生成树

    题目 http://poj.org/problem?id=2728 关键词:0/1分数规划,参数搜索,二分法,dinkelbach 参考资料:http://hi.baidu.com/zzningxp/ ...

  3. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  4. 【POJ2728】Desert King 最优比率生成树

    题目大意:给定一个 N 个点的无向完全图,边有两个不同性质的边权,求该无向图的一棵最优比例生成树,使得性质为 A 的边权和比性质为 B 的边权和最小. 题解:要求的答案可以看成是 0-1 分数规划问题 ...

  5. Desert King(最优比率生成树)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22717   Accepted: 6374 Desc ...

  6. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  7. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  8. POJ 2728 Desert King (最优比率树)

    题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目 ...

  9. poj-2728Desert King(最优比率生成树)

    David the Great has just become the king of a desert country. To win the respect of his people, he d ...

  10. POJ 2728 Desert King (最优比例生成树)

    POJ2728 无向图中对每条边i 有两个权值wi 和vi 求一个生成树使得 (w1+w2+...wn-1)/(v1+v2+...+vn-1)最小. 采用二分答案mid的思想. 将边的权值改为 wi- ...

随机推荐

  1. kubernetes dashboard 二次开发

    Kubernetes Dashboard 二次开发 官方源码:https://github.com/kubernetes/dashboard 开发文档:https://github.com/kuber ...

  2. 对spring boot 之AutoConfiguration 的理解

    来自:http://rensanning.iteye.com/blog/2363467 https://blog.csdn.net/tincox/article/details/79186067 Au ...

  3. u-boot-2015.07 autoconf.mk生成过程分析

    1.u-boot2015.7版本编译没有在顶层目录中生成.config文件,而生成了include/autoconf.mk和include/autoconf.mk.dep两个文件,并在每个模块编译的时 ...

  4. u-boot-2015.07 make xxx_config 分析

    1.u-boot编译脚本:mk.sh #! /bin/sh export PATH=$PATH:/opt/ti-sdk-am335x-evm-08.00.00.00/linux-devkit/sysr ...

  5. UML中的组合、聚合、关联、继承、实现、依赖

    转自:http://justsee.iteye.com/blog/808799 UML定义的关系主要有六种:依赖.类属.关联.实现.聚合和组合. 继承 指的是一个类(称为子类.子接口)继承另外的一个类 ...

  6. 以普通用户启动的Vim如何保存需要root权限的文件

    在Linux上工作的朋友很可能遇到过这样一种情况,当你用Vim编辑完一个文件时,运行:wq保存退出,突然蹦出一个错误: E45: 'readonly' option is set (add ! to ...

  7. Android6.0------权限管理

    此博客主要谈谈Android6.0的权限,关于其他6.0的知识 请看https://developer.android.com/about/versions/marshmallow/android-6 ...

  8. 16.并发容器之CopyOnWriteArrayList

    1. CopyOnWriteArrayList的简介 java学习者都清楚ArrayList并不是线程安全的,在读线程在读取ArrayList的时候如果有写线程在写数据的时候,基于fast-fail机 ...

  9. Seaborn-05-Pairplot多变量图

    转自:http://www.jianshu.com/p/6e18d21a4cad

  10. JavaScript中Function Declaration与Function Expression 或者说 function fn(){}和var fn=function(){} 的区别

    JavaScript是一种解释型语言,函数声明会在JavaScript代码加载后.执行前被解释,而函数表达式只有在执行到这一行代码时才会被解释. 在JS中有两种定义函数的方式, 1是:var aaa= ...