题目链接:https://www.spoj.com/problems/COT/en/

题目:

题意:

  给你一棵有n个节点的树,求节点u到节点v这条链上的第k大。

思路:

  我们首先用dfs进行建题目给的树,然后在dfs时进行主席树的update操作。众所周知,主席树采用的是前缀和思想,区间第k大是与前一个树添加新的线段树,而树上第k大则是与父亲节点添加新的线段树,因而在此思想上此题的答案为sum[u] + sum[v] - sum[lca(u,v)] - sum[fa[lca(u,v)]。求第k大操作和区间第k大一样,就不描述了~

代码实现如下:

 #include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pli;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL; #define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n");
#define debug(x) cout<<#x"=["<<x<<"]" <<endl;
#define FIN freopen("/home/dillonh/CLionProjects//in.txt", "r", stdin);
#define FOUT freopen("D://code//out.txt", "w", stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0); const double eps = 1e-;
const int mod = ;
const int maxn = + ;
const double pi = acos(-);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL; int n, q, tot, cnt, x, y, k, len;
int head[maxn], root[maxn];
int a[maxn], deep[maxn], fa[maxn][];
vector<int> v; struct edge {
int v, next;
}ed[maxn<<]; void addedge(int u, int v) {
ed[tot].v = v;
ed[tot].next = head[u];
head[u] = tot++;
ed[tot].v = u;
ed[tot].next = head[v];
head[v] = tot++;
} struct node {
int l, r, sum;
}tree[maxn*]; int getid(int x) {
return lower_bound(v.begin(), v.end(), x) - v.begin() + ;
} void update(int l, int r, int& x, int y, int pos) {
tree[++cnt] = tree[y], tree[cnt].sum++, x = cnt;
if(l == r) return;
int mid = (l + r) >> ;
if(mid >= pos) update(l, mid, tree[x].l, tree[y].l, pos);
else update(mid + , r, tree[x].r, tree[y].r, pos);
} int query(int l, int r, int x, int y, int p, int pp, int k) {
if(l == r) return l;
int mid = (l + r) >> ;
int sum = tree[tree[x].l].sum + tree[tree[y].l].sum - tree[tree[p].l].sum - tree[tree[pp].l].sum;
if(sum >= k) return query(l, mid, tree[x].l, tree[y].l, tree[p].l, tree[pp].l, k);
else return query(mid + , r, tree[x].r, tree[y].r, tree[p].r, tree[pp].r, k - sum);
} void dfs(int u, int d, int p) {
deep[u] = d;
fa[u][] = p;
update(, len, root[u], root[p], getid(a[u]));
for(int i = head[u]; ~i; i = ed[i].next) {
int v = ed[i].v;
if(v != p) {
dfs(v, d + , u);
}
}
} void lca() {
for(int i = ; i <= n; i++) {
for(int j = ; ( << j) <= n; j++) {
fa[i][j] = -;
}
}
for(int j = ; ( << j) <= n; j++) {
for(int i = ; i <= n; i++) {
if(fa[i][j-] != -) {
fa[i][j] = fa[fa[i][j-]][j-];
}
}
}
} int cal(int u, int v) {
if(deep[u] < deep[v]) swap(u, v);
int k;
for(k = ; ( << ( + k)) <= deep[u]; k++);
for(int i = k; i >= ; i--) {
if(deep[u] - ( << i) >= deep[v]) {
u = fa[u][i];
}
}
if(u == v) return u;
for(int i = k; i >= ; i--) {
if(fa[u][i] != - && fa[u][i] != fa[v][i]) {
u = fa[u][i];
v = fa[v][i];
}
}
return fa[u][];
} int main() {
#ifndef ONLINE_JUDGE
FIN;
#endif
scanf("%d%d", &n, &q);
memset(head, -, sizeof(head));
for(int i = ; i <= n; i++) scanf("%d", &a[i]), v.push_back(a[i]);
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
len = v.size();
for(int i = ; i < n; i++) scanf("%d%d", &x, &y), addedge(x, y);
dfs(, , );
lca();
while(q--) {
scanf("%d%d%d", &x, &y, &k);
int p = cal(x, y);
printf("%d\n", v[query(, len, root[x], root[y], root[p], root[fa[p][]], k)-]);
}
return ;
}

Count on a tree(SPOJ COT + 树上第k大 + 主席树 + LCA)的更多相关文章

  1. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  2. 🔺Count on a tree SPOJ - COT (无能为力。。。)

    https://cn.vjudge.net/problem/SPOJ-COT 插上 大佬的代码 和 我的...以后再看吧... Count on a tree 大佬:http://www.cnblog ...

  3. Count on a tree SPOJ - COT (主席树,LCA)

    You are given a tree with N nodes. The tree nodes are numbered from 1 to N. Each node has an integer ...

  4. 【SPOJ】Count On A Tree II(树上莫队)

    [SPOJ]Count On A Tree II(树上莫队) 题面 洛谷 Vjudge 洛谷上有翻译啦 题解 如果不在树上就是一个很裸很裸的莫队 现在在树上,就是一个很裸很裸的树上莫队啦. #incl ...

  5. Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式)

    Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式) 题外话,这是我第40篇随笔,纪念一下.<( ̄︶ ̄)↗[GO!] 题意 是说有棵树,每个节点上 ...

  6. HDU 4729 An Easy Problem for Elfness (主席树,树上第K大)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出一个带边权的图.对于每一个询问(S , ...

  7. 树上第k大联通块

    题意:求树上第k大联通块 n,k<=1e5 考虑转化为k短路的形式. 也就是要建出一张图是的这条图上每一条S到T的路径都能代表一个联通块. 点分治建图 递归下去,假定每个子树的所有联通块中都可以 ...

  8. SPOJ 10628 COT - Count on a tree(在树上建立主席树)(LCA)

    COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to ...

  9. SPOJ COT Count on a tree(树上主席树 + LCA 求点第k小)题解

    题意:n个点的树,每个点有权值,问你u~v路径第k小的点的权值是? 思路: 树上主席树就是每个点建一棵权值线段树,具体看JQ博客,LCA用倍增logn求出,具体原理看这里 树上主席树我每个点的存的是点 ...

随机推荐

  1. 【Leetcode】445. Add Two Numbers II

    You are given two non-empty linked lists representing two non-negative integers. The most significan ...

  2. 可以从Jar外部加载JDBC.properties的Spring-mybatis配置文件

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  3. Git(未完待续)

    Git的历史咱们就不多说来,我还是喜欢直白点,直接来干货吧 在Linux上安装Git 不同的系统不同的安装命令,基础的就不说来,centos直接yum就ok. 安装完成后,还需要最后一步设置,在命令行 ...

  4. Exception: com.mysql.jdbc.exceptions.jdbc4.MySQLTransactionRollbackException: Deadlock found when trying to get lock; try restarting transaction

    我在update数据库的时候出现的死锁 数据库表死锁 Exception: com.mysql.jdbc.exceptions.jdbc4.MySQLTransactionRollbackExcept ...

  5. HDU4681_String

    这个题目是这样的. 给你三个字符串A,B,C,(C一定是A和B的一个公共子序列). 现在要求你构造出一个串D,使得D同时为A和B的子序列,且C是D的一个连续子串.求D的最大可能长度. 很简单的一个DP ...

  6. vue项目 axios封装第二弹

    import axios from "axios"; import qs from "qs"; import { Message, MessageBox } f ...

  7. MSSQL DBA权限获取WEBSHELL的过程

    前言 本文主要通过一个案例来演示一下当MSSQL是DBA权限,且不知道路径的时候如何去获取WEBSHELL.当然这种方式对站库分离的无效.我测试的环境是在Win7 64位下,数据库是SQLServer ...

  8. NOIP2017 Day1 T3 逛公园(最短路+拓扑排序+DP)

    神tm比赛时多清个零就有60了T T 首先跑出1起点和n起点的最短路,因为k只有50,所以可以DP.设f[i][j]表示比最短路多走i的长度,到j的方案数. 我们发现如果在最短路上的和零边会有后向性, ...

  9. bzoj3007: 拯救小云公主(二分+并查集)

    挺水的题...好多题解说是对偶图,其实感觉不能算严格意义上的对偶图吧QAQ 先二分答案r,然后以boss为中心半径为r的圆不能走,求能否从左下走到右上. 不能从左下走到右上,说明这堆圆把图隔开了,于是 ...

  10. 【agc006C】Rabbit Exercise

    Portal --> agc006C Solution 啊感觉是好有意思的一道题qwq官方题解里面的说辞也是够皮的哈哈哈..(大概就是说如果你没有意识到那个trick的话这题这辈子都做不出来qw ...