基准时间限制:2 秒 空间限制:524288 KB 分值: 40 
A国是一个神奇的国家。

这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1。

A国的神奇体现在,他们有着神奇的贸易规则。
当两个城市u,v的编号满足calc(u,v)=1的时候,这两个城市才可以进行贸易(即有一条边相连)。
而calc(u,v)定义为u,v按位异或的结果的二进制表示中数字1的个数。
ex:calc(1,2)=2         ——> 01 xor 10 = 11
       calc(100,101)=1 ——> 0110,0100 xor 0110,0101 = 1
       calc(233,233)=0 ——> 1110,1001 xor 1110,1001 = 0
每个城市开始时都有不同的货物存储量。
而贸易的规则是:
每过一天,可以交易的城市之间就会交易一次。
在每次交易中,当前城市u中的每个货物都将使所有与当前城市u有贸易关系的城市货物量 +1 。
请问 t 天后,每个城市会有多少货物。
答案可能会很大,所以请对1e9+7取模。

 
Input
第一行两个正整数 n , t,意义如题。
第二行 2^n 个非负整数,第 i 个数表示编号为 i-1 的城市的初始货物存储量。
n<=20  t<=10^9
Output
输出一行 2^n 个非负整数。
第 i 个数表示过了 t 天后,编号为 i-1 的城市上的货物数量对 1e9+7 取模的结果。
Input示例
样例1:
3 2
1 2 3 4 5 6 7 8
样例2:
1 1
0 1
Output示例
样例1:
58 62 66 70 74 78 82 86
样例2:
1 1

动态规划 FWT

根据题意一天到下一天的转移有两种:

  1、从f[x]转移到f[x](累加自身)

  2、从f[x]转移到f[x Xor 2^i]

转化一下视角,从上一天到这天的转移有两种:

  1、从f[x Xor 2^0]到f[x]

  2、从f[x Xor 2^i]到f[x]

显然,我们构造一个数组B,使得B只有0和2的幂次位为1,其他位为0,和原数组做异或卷积就能得到一次转移的结果。

加个快速幂就可以了。

需要输出优化。

博主不知道是有多困(chun),才能做到FWT的时候只变换原数组不变换B数组就直接乘,还如同星际选手一般地反复在其他地方找bug……

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int mod=1e9+;
const int inv2=;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void write(int x){
if(x>)write(x/);
putchar(''+x%);
return;
}
int N,len;
int a[mxn],b[mxn];
void FWT(int *a){
for(int i=;i<N;i<<=){
int p=i<<;
for(int j=;j<N;j+=p){
for(int k=;k<i;k++){
int x=a[j+k],y=a[j+k+i];
a[j+k]=(x+y);if(a[j+k]>=mod)a[j+k]-=mod;
a[j+k+i]=(x-y);if(a[j+k+i]<)a[j+k+i]+=mod;
}
}
}
return;
}
void UTF(int *a){
for(int i=;i<N;i<<=){
int p=i<<;
for(int j=;j<N;j+=p){
for(int k=;k<i;k++){
int x=a[j+k],y=a[j+k+i];
a[j+k]=(x+y)*(LL)inv2%mod;
a[j+k+i]=(x-y)*(LL)inv2%mod;
}
}
}
return;
}
int ksm(int a,int k){
int res=;
while(k){
if(k&)res=(LL)res*a%mod;
a=(LL)a*a%mod;
k>>=;
}
return res;
}
int n,m,T;
int main(){
int i,j;
n=read();T=read();
m=<<n;
for(N=,len=;N<=m;N<<=)len++;
for(i=;i<m;i++)a[i]=read();
for(i=;i<m;i++){
if(i-(i&-i)==)b[i]=;
}
FWT(a);FWT(b);
for(i=;i<N;i++)a[i]=(LL)a[i]*ksm(b[i],T)%mod;
UTF(a);
for(i=;i<m;i++){
// printf("%d ",(a[i]+mod)%mod);
write((a[i]+mod)%mod);
putchar(' ');
}
return ;
}
基准时间限制:2 秒 空间限制:524288 KB 分值: 40 难度:4级算法题
 收藏
 关注
A国是一个神奇的国家。

这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1。

A国的神奇体现在,他们有着神奇的贸易规则。
当两个城市u,v的编号满足calc(u,v)=1的时候,这两个城市才可以进行贸易(即有一条边相连)。
而calc(u,v)定义为u,v按位异或的结果的二进制表示中数字1的个数。
ex:calc(1,2)=2         ——> 01 xor 10 = 11
       calc(100,101)=1 ——> 0110,0100 xor 0110,0101 = 1
       calc(233,233)=0 ——> 1110,1001 xor 1110,1001 = 0
每个城市开始时都有不同的货物存储量。
而贸易的规则是:
每过一天,可以交易的城市之间就会交易一次。
在每次交易中,当前城市u中的每个货物都将使所有与当前城市u有贸易关系的城市货物量 +1 。
请问 t 天后,每个城市会有多少货物。
答案可能会很大,所以请对1e9+7取模。

 
Input
第一行两个正整数 n , t,意义如题。
第二行 2^n 个非负整数,第 i 个数表示编号为 i-1 的城市的初始货物存储量。
n<=20  t<=10^9
Output
输出一行 2^n 个非负整数。
第 i 个数表示过了 t 天后,编号为 i-1 的城市上的货物数量对 1e9+7 取模的结果。
Input示例
样例1:
3 2
1 2 3 4 5 6 7 8
样例2:
1 1
0 1
Output示例
样例1:
58 62 66 70 74 78 82 86
样例2:
1 1

51nod1773 A国的贸易的更多相关文章

  1. 51Nod1773 A国的贸易 多项式 FWT

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1773.html 题目传送门 - 51Nod1773 题意 给定一个长度为 $2^n$ 的序列,第 $ ...

  2. 【51Nod1773】A国的贸易 解题报告

    [51Nod1773]A国的贸易 Description 给出一个长度为 \(2^n\) 的序列,编号从\(0\)开始.每次操作后,如果 \(i\) 与 \(j\) 的二进制表示只差一位则第 \(i\ ...

  3. [51Nod 1773] A国的贸易

    [51Nod 1773] A国的贸易 题目描述 A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们有着神奇的贸易规则. ...

  4. 【51Nod1773】A国的贸易 FWT+快速幂

    题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...

  5. 【51nod】1773 A国的贸易

    题解 FWT板子题 可以发现 \(dp[i][u] = \sum_{i = 0}^{N - 1} dp[i - 1][u xor (2^i)] + dp[i - 1][u]\) 然后如果把异或提出来可 ...

  6. 51NOD 1773:A国的贸易——题解

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1773 参考1:FWT讲解 https://www.cnblogs.com ...

  7. NOIP2009最优贸易[spfa变形|tarjan 缩点 DP]

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  8. 【NOIP2009 T3】 最佳贸易 (双向SPFA)

    C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道 ...

  9. [NOIP2009] 提高组 洛谷P1073 最优贸易

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

随机推荐

  1. 设计模式php篇(一)————单例模式

    话不多说,直接上代码: <?php namespace DesignPattern; /** * php设计模式之单例模式 */ class SingleInstance { private s ...

  2. laravel获取当前认证用户登录

    可以通过Auth门面访问认证用户: 要在方法上面声明 use Auth: 获取当前认证用户使用 $user = Auth::user(); 获取用户认证ID $id = Auth::id;

  3. php 计算本周星期一、本月第一天 本月最后一天 下个月第一天

    本周一echo date('Y-m-d',(time()-((date('w')==0?7:date('w'))-1)*24*3600)); //w为星期几的数字形式,这里0为周日 本周日 echo  ...

  4. ios 中不new Date 的格式 不支持年月日 以‘-’ 分割的格式

    new Date("2018-1-5") 在 ios 中显示 invalid date - 换做 / 则可以顺利显示 new Date("2018/1/5")

  5. 【JavaScript&jQuery】省市区三级联动

    HTML: <%@page import="com.mysql.jdbc.Connection"%> <%@ page language="java&q ...

  6. 【BZOJ1088】扫雷(递推)

    [BZOJ1088]扫雷(递推) 题面 BZOJ 题解 忽然发现这就是一道逗逼题. 只需要枚举一下第一个是什么,后面都能够推出来了.. #include<iostream> using n ...

  7. HiHoCoder1513:小Hi的烦恼——题解

    https://hihocoder.com/problemset/problem/1513 小Hi从小的一大兴趣爱好就是学习,但是他发现尽管他认真学习,依旧有学神考的比他好. 小Hi在高中期间参加了市 ...

  8. Linux内核分析4

    周子轩原创作品转载请注明出处  <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 使用库函数API和C代码 ...

  9. Codeforces 671C. Ultimate Weirdness of an Array(数论+线段树)

    看见$a_i\leq 200000$和gcd,就大概知道是要枚举gcd也就是答案了... 因为答案是max,可以发现我们很容易算出<=i的答案,但是很难求出单个i的答案,所以我们可以运用差分的思 ...

  10. 解题:APIO 2008 免费道路

    题面 我们发现我们可以很容易知道最终完成的生成树中有多少鹅卵石路,但是我们不好得到这棵生成树的结构,所以我们尽量“谨慎”地完成生成树·,最好是一点点加到我们要达到的标准而不是通过删掉一些东西来完成 我 ...