一、桶排思想

1.通过构建n个空桶再将待排各个元素分配到每个桶。而此时有可能每个桶的元素数量不一样,可能会出现这样的情况:有的桶没有放任何元素,有的桶只有一个元素,有的桶不止一个元素可能会是2+;

2.按照下标对内容非0的桶按个数输出下标;

二、[USACO08DEC]Patting Heads题解

Description

-It's Bessie's birthday and time for party games! Bessie has instructed the N (1 <= N <= 100,000) cows conveniently numbered 1..N to sit in a circle (so that cow i [except at the ends] sits next to cows i-1 and i+1; cow N sits next to cow 1). Meanwhile, Farmer John fills a barrel with one billion slips of paper, each containing some integer in the range 1..1,000,000.Each cow i then draws a number A_i (1 <= A_i <= 1,000,000) (which is not necessarily unique, of course) from the giant barrel. Taking turns, each cow i then takes a walk around the circle and pats the heads of all other cows j such that her number A_i is exactly.divisible by cow j's number A_j; she then sits again back in her original position.The cows would like you to help them determine, for each cow, the number of other cows she should pat.

inout:

-Line 1: A single integer: N

-Lines 2..N+1: Line i+1 contains a single integer: A_i

output:

-Lines 1..N: On line i, print a single integer that is the number of other cows patted by cow i.

Solution

1.题目意为输出所有当前手上纸条数为当前牛手上纸条数因子的牛的序号。

2.因为数据规模到了1e6所以有很大概率有重复标记,使用桶排思路,a数组记地址,num数组用桶排计数,ans数组记录因子个数;

3.从较小的数开始对其倍数进行ans数组中因数的累加;

4.因为自己作为自己的因子也会被累加记得最后对结果-1,用a数组记地址作下标输出ans[a[i]]-1;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
inline int rd()
{
int x=0;
char c;
c=getchar();
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0') //邢神的读入优化
{
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return x;
}
int n,Max,a[100005],num[1000005],ans[1000005];
int main()
{
n=rd();
for (int i=1;i<=n;i++) a[i]=rd(),num[a[i]]++,Max=max(Max,a[i]);
for (int i=1;i<=Max;i++)
{
if (num[i]==0) continue;
for (int j=i;j<=Max;j+=i) ans[j]+=num[i]; //桶排思想对Max内i的倍数进行因数的累加
}
for (int i=1;i<=n;i++) printf("%d\n",ans[a[i]]-1); //(因为自己作为自己的因子也会被累加记得最后对结果-1)用a数组记地址作下标输出ans[a[i]]-1
return 0;
}

浅谈桶排思想及[USACO08DEC]Patting Heads 题解的更多相关文章

  1. 浅谈React编程思想

    React是Facebook推出的面向视图层开发的一个框架,用于解决大型应用,包括如何很好地管理DOM结构,是构建大型,快速Web app的首选方式. React使用JavaScript来构建用户界面 ...

  2. 数据结构4——浅谈DancingLinks的思想及应用

    在学习DancingLinks之前,我们先来回顾一下我们以前学过的回溯法. 我们学习基础的回溯法的时候,我们都是先判断是否达到解,然后继续搜索. 对于搜到的下一个点,将他标记为使用过( vis[i]= ...

  3. 浅谈Java面向对象思想

    本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...

  4. [USACO08DEC]Patting Heads

    嘟嘟嘟 这题还是比较水的.首先O(n2)模拟显然过不了,那就换一种思路,考虑每一个数对答案的贡献,显然一个数a[i]会对后面的a[i] * 2, a[i] * 3,a[i] * 4……都贡献1,.那么 ...

  5. 浅谈分治 —— 洛谷P1228 地毯填补问题 题解

    如果想看原题网址的话请点击这里:地毯填补问题 原题: 题目描述 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子 ...

  6. 【洛谷2926/BZOJ1607】[USACO08DEC]Patting Heads拍头(筛法)

    题目: 洛谷2926 (截止至本博客发表时,BZOJ1607题面有误,正确题面请到洛谷2926查看) 分析: = 一句话题意:给定\(n\)个数\(\{a_i\}\),求对于每个\(a_i\)有多少个 ...

  7. cdq分治浅谈

    $cdq$分治浅谈 1.分治思想 分治实际上是一种思想,这种思想就是将一个大问题划分成为一些小问题,并且这些小问题与这个大问题在某中意义上是等价的. 2.普通分治与$cdq$分治的区别 普通分治与$c ...

  8. string [线段树优化桶排]

    题意大概是给你一个字符串,1e5次修改,每次给一个区间升序排列或降序排列,最后输出这个字符串; 其实是个挺裸的线段树优化题;但是我没有意识去结合桶排,扑该..... 首先 1.40分算法 O(NMlo ...

  9. 转:浅谈深度学习(Deep Learning)的基本思想和方法

    浅谈深度学习(Deep Learning)的基本思想和方法  参考:http://blog.csdn.net/xianlingmao/article/details/8478562 深度学习(Deep ...

随机推荐

  1. bash编程2

    bash基础编程 前言:条件测试语法有两种书写模式,一种时[expression] ,另外一种是[[exprssion]] ,为了在书写条件测试的过程中,不让大家将两种格式互相混淆,那么在这里只讲一种 ...

  2. 0302借软件工程触IT

         没有不想学好的学生,也没有选择计算机软件专业后不想过能进军IT的行业的.就对于自己情况来说,大学选择计算机商业软件专业学习也有一年多时间了,未接触专业知识前IT是一个高大上的向往,在初学C语 ...

  3. B-2阶段组员分数分配

    组名: 新蜂 组长: 武志远 组员: 宫成荣 谢孝淼 杨柳 李峤 项目名称: java俄罗斯方块 武 武 武 武 杨 宫 宫 杨 宫 谢 李 杨 李 谢 李 谢 李 谢 杨 宫 扬 谢 宫 李 武 评 ...

  4. vue-cli3使用 DllPlugin 实现预编译,提升构建速度

    在项目打包上有两个目标:减少打包代码体积和加快打包速度 1. 减少打包体积: (1)对于用的比较少的库,可以去掉(我去掉了jquery以及lodash),用到的地方,参考源码自己写 (2)非用不可的又 ...

  5. 【JavaScript】checkBox的多选行<tr>信息获取

    页面的列表table显示(后台model.addAttribute("page", page);传来page信息,page通过foreach标签迭代展示表格数据): <!-- ...

  6. BZOJ4975 区间翻转

    这个范围给的很像区间dp之类的,想了半天没一点思路,滚去看了一眼status被吓傻了.然后瞎猜了一发结论就过掉了. 求出逆序对数,判断是否为奇数即可.因为翻转区间会把将这段区间的逆序对取反,而长度为4 ...

  7. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  8. 【神仙题】【CF28D】 Don't fear, DravDe is kind

    传送门 Description 一个有N辆卡车的车队从城市Z驶向城市3,来到了一条叫做"恐惧隧道"的隧道.在卡车司机中,有传言说怪物DravDe在那条隧道里搜寻司机.有些司机害怕先 ...

  9. opencv查找轮廓---cvFindContours && cvDrawCountours 用法及例子

    http://blog.csdn.net/timidsmile/article/details/8519751 环境: vs2008 + opencv2.1 先看,这两个函数的用法(参考 opencv ...

  10. 手把手教你如何玩转Activiti工作流

    手把手教你如何玩转Activiti工作流 置顶 2018年01月30日 19:51:36 Cs_hnu_scw 阅读数:24023   版权声明:本文为博主原创文章,未经博主允许不得转载. https ...