题意:在x轴\([1,X]\)内的上空分布有n个占据空间\([L_i,R_i]\),高度\(D_i\)的线段,射中线段的得分为其高度,每次询问从x轴的\(x\)往上空射的最近k个线段的总得分,具体得分制看题

按高度对线段进行排序,那么如果我们能\(O(logn)\)内查询到某一时间段的占据\(x\)的线段个数,那么由占据\(x\)的个数的单调性就能在\(O(log^2n)\)内找到符合的最近k个线段

而某一时间段占据某位置的线段个数那就对应于主席树,二分对应于某一历史版本的根

注意由于查询必然经过叶子,那么我们就可以实现lazy不下传,只要打到它最后要覆盖的节点即可

还有空间要乘64,乘32的话直接T(?)

#include<bits/stdc++.h>
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define rrep(i,j,k) for(int i=j;i>=k;i--)
#define erep(i,u) for(int i=head[u];~i;i=nxt[i])
#define print(a) printf("%lld",(ll)(a))
#define printbk(a) printf("%lld ",(ll)(a))
#define println(a) printf("%lld\n",(ll)(a))
using namespace std;
const int MAXN = 1e5+11;
const int MAXM = 2e6+11;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct LINE{
int l,r,d;
bool operator < (const LINE &rhs) const{
return d<rhs.d;
}
}line[MAXN];
typedef pair<ll,ll> P;
struct FST{
ll val[MAXN<<6];
int cnt[MAXN<<6];
int lc[MAXN<<6],rc[MAXN<<6];
int T[MAXN],tot;
void init(){tot=0;}
int build(int l,int r){
int cur=++tot;
cnt[cur]=val[cur]=lc[cur]=rc[cur]=0;
if(l==r) return cur;
int mid=l+r>>1;
lc[cur]=build(l,mid);
rc[cur]=build(mid+1,r);
return cur;
}
inline void copy(int cur,int old){
lc[cur]=lc[old];
rc[cur]=rc[old];
cnt[cur]=cnt[old];
val[cur]=val[old];
}
int update(int old,int l,int r,int L,int R,ll v){
int cur=++tot;
copy(cur,old);
//cnt[cur]++;
if(L<=l&&r<=R){
val[cur]+=v;
cnt[cur]++;
return cur;
}
int mid=l+r>>1;
if(L<=mid) lc[cur]=update(lc[old],l,mid,L,R,v);
if(R>mid) rc[cur]=update(rc[old],mid+1,r,L,R,v);
return cur;
}
P query(int cur,int l,int r,int k){
P p=P(cnt[cur],val[cur]);
if(l==r) return p;
int mid=l+r>>1;
if(k<=mid){
P t=query(lc[cur],l,mid,k);
return P(p.first+t.first,p.second+t.second);
}
else{
P t=query(rc[cur],mid+1,r,k);
return P(p.first+t.first,p.second+t.second);
}
}
}fst;
int n,m,X,PP;
int main(){
while(cin>>n>>m>>X>>PP){
rep(i,1,n){
line[i].l=read();
line[i].r=read();
line[i].d=read();
}
sort(line+1,line+1+n);
fst.init(); fst.T[0]=fst.build(1,X);
rep(i,1,n) fst.T[i]=fst.update(fst.T[i-1],1,X,line[i].l,line[i].r,line[i].d);
ll pre=1;
rep(i,1,m){
ll x=read();
ll a=read();
ll b=read();
ll c=read();
int lo=0,hi=n,mid;
ll k=(a*pre+b)%c;
P p;
while(lo<hi){
mid=lo+(hi-lo)/2;
p=fst.query(fst.T[mid],1,X,x);
if(p.first>=k) hi=mid;
else lo=mid+1;
}
P res=fst.query(fst.T[lo],1,X,x);
if(pre>PP) res.second<<=1;
pre=res.second;
println(res.second);
}
}
return 0;
}

HDU - 4866 主席树 二分的更多相关文章

  1. HDU6621 K-th Closest Distance HDU2019多校训练第四场 1008(主席树+二分)

    HDU6621 K-th Closest Distance HDU2019多校训练第四场 1008(主席树+二分) 传送门:http://acm.hdu.edu.cn/showproblem.php? ...

  2. hdu 5919 主席树(区间不同数的个数 + 区间第k大)

    Sequence II Time Limit: 9000/4500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  3. 2018湘潭邀请赛C题(主席树+二分)

    题目地址:https://www.icpc.camp/contests/6CP5W4knRaIRgU 比赛的时候知道这题是用主席树+二分,可是当时没有学主席树,就连有模板都不敢套,因为代码实在是太长了 ...

  4. BZOJ.1926.[SDOI2010]粟粟的书架(前缀和 主席树 二分)

    题目链接 题意: 在给定矩形区域内找出最少的数,满足和>=k.输出数的个数.两种数据范围. 0~50 注意到(真没注意到...)P[i,j]<=1000,我们可以利用前缀和预处理. num ...

  5. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  6. POJ 6621: K-th Closest Distance(主席树 + 二分)

    K-th Closest Distance Time Limit: 20000/15000 MS (Java/Others)    Memory Limit: 524288/524288 K (Jav ...

  7. Super Mario HDU 4417 主席树区间查询

    Super Mario HDU 4417 主席树区间查询 题意 给你n个数(编号从0开始),然后查询区间内小于k的数的个数. 解题思路 这个可以使用主席树来处理,因为这个很类似查询区间内的第k小的问题 ...

  8. HDU 6278 主席树(区间第k大)+二分

    Just h-index Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)To ...

  9. HDU - 6621 K-th Closest Distance 主席树+二分答案

    K-th Closest Distance 主席树第二波~ 题意 给你\(n\)个数\(m\)个询问,问\(i\in [l,r]\)计算每一个\(|a_{i}-p|\)求出第\(k\)小 题目要求强制 ...

随机推荐

  1. [Training Video - 4] [Groovy] Function in detail

    Employee.log=log Employee e1 = new Employee() Employee e2 = new Employee() e1.name = "A" e ...

  2. 1、概率vs统计

  3. 无归档情况下使用BBED处理ORA-01113错误

    在丢失归档情况下,恢复时常会遇到ora-01113错误,以下实验模拟表空间offline,然后在丢失归档文件的情况下使用BBED修改文件头信息,最后恢复数据文件: 数据库版本: SQL> sel ...

  4. scrapy爬虫事件以及数据保存为txt,json,mysql

    今天要爬取的网页是虎嗅网 我们将完成如下几个步骤: 创建一个新的Scrapy工程 定义你所需要要抽取的Item对象 编写一个spider来爬取某个网站并提取出所有的Item对象 编写一个Item Pi ...

  5. IO编程之writelines方法

    1.使用with open as 函数写入文件 2.创建后的文件名为database.txt 3.创建一个函数进行读取文件,使用for循环遍历整个文件内容 4.使用if __name__=='__ma ...

  6. explain分析sql效率

    Explain命令在解决数据库性能上是第一推荐使用命令,大部分的性能问题可以通过此命令来简单的解决,Explain可以用来查看SQL语句的执行效 果,可以帮助选择更好的索引和优化查询语句,写出更好的优 ...

  7. C# 静态类的使用

    静态类与非静态类基本相同,但存在一个区别:静态类不能实例化.也就是说,不能使用 new 关键字创建静态类类型的变量.因为没有实例变量,所以要使用类名本身访问静态类的成员. static class C ...

  8. Activator不能创建包含范型参数的实例

    Activator包含特定的方法,用以在本地或从远程创建对象类型,或获取对现有远程对象的引用.此类不能被继承. 具体介绍:http://msdn.microsoft.com/zh-cn/library ...

  9. JSTL标签总结备用

    前言 ========================================================================= JSTL标签库,是日常开发经常使用的,也是众多 ...

  10. zuluCryt cli howto

    1.解锁卷的命令. zuluCrypt-cli -o -d /dev/sdc1 -m blabla -e ro -f /home/keyFile zuluCrypt-cli -o -d /dev/sd ...