题意:在x轴\([1,X]\)内的上空分布有n个占据空间\([L_i,R_i]\),高度\(D_i\)的线段,射中线段的得分为其高度,每次询问从x轴的\(x\)往上空射的最近k个线段的总得分,具体得分制看题

按高度对线段进行排序,那么如果我们能\(O(logn)\)内查询到某一时间段的占据\(x\)的线段个数,那么由占据\(x\)的个数的单调性就能在\(O(log^2n)\)内找到符合的最近k个线段

而某一时间段占据某位置的线段个数那就对应于主席树,二分对应于某一历史版本的根

注意由于查询必然经过叶子,那么我们就可以实现lazy不下传,只要打到它最后要覆盖的节点即可

还有空间要乘64,乘32的话直接T(?)

#include<bits/stdc++.h>
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define rrep(i,j,k) for(int i=j;i>=k;i--)
#define erep(i,u) for(int i=head[u];~i;i=nxt[i])
#define print(a) printf("%lld",(ll)(a))
#define printbk(a) printf("%lld ",(ll)(a))
#define println(a) printf("%lld\n",(ll)(a))
using namespace std;
const int MAXN = 1e5+11;
const int MAXM = 2e6+11;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct LINE{
int l,r,d;
bool operator < (const LINE &rhs) const{
return d<rhs.d;
}
}line[MAXN];
typedef pair<ll,ll> P;
struct FST{
ll val[MAXN<<6];
int cnt[MAXN<<6];
int lc[MAXN<<6],rc[MAXN<<6];
int T[MAXN],tot;
void init(){tot=0;}
int build(int l,int r){
int cur=++tot;
cnt[cur]=val[cur]=lc[cur]=rc[cur]=0;
if(l==r) return cur;
int mid=l+r>>1;
lc[cur]=build(l,mid);
rc[cur]=build(mid+1,r);
return cur;
}
inline void copy(int cur,int old){
lc[cur]=lc[old];
rc[cur]=rc[old];
cnt[cur]=cnt[old];
val[cur]=val[old];
}
int update(int old,int l,int r,int L,int R,ll v){
int cur=++tot;
copy(cur,old);
//cnt[cur]++;
if(L<=l&&r<=R){
val[cur]+=v;
cnt[cur]++;
return cur;
}
int mid=l+r>>1;
if(L<=mid) lc[cur]=update(lc[old],l,mid,L,R,v);
if(R>mid) rc[cur]=update(rc[old],mid+1,r,L,R,v);
return cur;
}
P query(int cur,int l,int r,int k){
P p=P(cnt[cur],val[cur]);
if(l==r) return p;
int mid=l+r>>1;
if(k<=mid){
P t=query(lc[cur],l,mid,k);
return P(p.first+t.first,p.second+t.second);
}
else{
P t=query(rc[cur],mid+1,r,k);
return P(p.first+t.first,p.second+t.second);
}
}
}fst;
int n,m,X,PP;
int main(){
while(cin>>n>>m>>X>>PP){
rep(i,1,n){
line[i].l=read();
line[i].r=read();
line[i].d=read();
}
sort(line+1,line+1+n);
fst.init(); fst.T[0]=fst.build(1,X);
rep(i,1,n) fst.T[i]=fst.update(fst.T[i-1],1,X,line[i].l,line[i].r,line[i].d);
ll pre=1;
rep(i,1,m){
ll x=read();
ll a=read();
ll b=read();
ll c=read();
int lo=0,hi=n,mid;
ll k=(a*pre+b)%c;
P p;
while(lo<hi){
mid=lo+(hi-lo)/2;
p=fst.query(fst.T[mid],1,X,x);
if(p.first>=k) hi=mid;
else lo=mid+1;
}
P res=fst.query(fst.T[lo],1,X,x);
if(pre>PP) res.second<<=1;
pre=res.second;
println(res.second);
}
}
return 0;
}

HDU - 4866 主席树 二分的更多相关文章

  1. HDU6621 K-th Closest Distance HDU2019多校训练第四场 1008(主席树+二分)

    HDU6621 K-th Closest Distance HDU2019多校训练第四场 1008(主席树+二分) 传送门:http://acm.hdu.edu.cn/showproblem.php? ...

  2. hdu 5919 主席树(区间不同数的个数 + 区间第k大)

    Sequence II Time Limit: 9000/4500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  3. 2018湘潭邀请赛C题(主席树+二分)

    题目地址:https://www.icpc.camp/contests/6CP5W4knRaIRgU 比赛的时候知道这题是用主席树+二分,可是当时没有学主席树,就连有模板都不敢套,因为代码实在是太长了 ...

  4. BZOJ.1926.[SDOI2010]粟粟的书架(前缀和 主席树 二分)

    题目链接 题意: 在给定矩形区域内找出最少的数,满足和>=k.输出数的个数.两种数据范围. 0~50 注意到(真没注意到...)P[i,j]<=1000,我们可以利用前缀和预处理. num ...

  5. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  6. POJ 6621: K-th Closest Distance(主席树 + 二分)

    K-th Closest Distance Time Limit: 20000/15000 MS (Java/Others)    Memory Limit: 524288/524288 K (Jav ...

  7. Super Mario HDU 4417 主席树区间查询

    Super Mario HDU 4417 主席树区间查询 题意 给你n个数(编号从0开始),然后查询区间内小于k的数的个数. 解题思路 这个可以使用主席树来处理,因为这个很类似查询区间内的第k小的问题 ...

  8. HDU 6278 主席树(区间第k大)+二分

    Just h-index Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)To ...

  9. HDU - 6621 K-th Closest Distance 主席树+二分答案

    K-th Closest Distance 主席树第二波~ 题意 给你\(n\)个数\(m\)个询问,问\(i\in [l,r]\)计算每一个\(|a_{i}-p|\)求出第\(k\)小 题目要求强制 ...

随机推荐

  1. cakephp跳转到指定的错误页面

    第一步:修改core.php 第二步:创建AppExceptionRender.php文件 参考:https://blog.jordanhopfner.com/2012/09/11/custom-40 ...

  2. vnpy自动化交易

    c++  python 写的自动化交易平台 期货ctp

  3. matrix derivatives

    来源:cs229 stanford Machine Learning Notes

  4. python 数据合并

    1. 数据合并 前言 一.横向合并 1. 基本合并语句 2. 键值名不一样的合并 3. “两个数据列名字重复了”的合并 二.纵向堆叠 统计师的Python日记[第6天:数据合并] 前言 根据我的Pyt ...

  5. cef相关

    chrome命令行参数:https://www.cnblogs.com/hushaojun/p/5981646.html cef启动调试,启动的命令行:--disable-web-security - ...

  6. RF和GBDT的区别

    Random Forest ​采用bagging思想,即利用bootstrap抽样,得到若干个数据集,每个数据集都训练一颗树. 构建决策树时,每次分类节点时,并不是考虑全部特征,而是从特征候选集中选取 ...

  7. ThinkPhp数据缓存技术

    1.缓存初始化 在 ThinkPHP 中,有一个专门处理缓存的类:Cache.class.php(在Thinkphp/Library/Think/cache.class.php,其他的各种缓存类也在这 ...

  8. 编写高质量代码改善C#程序的157个建议——建议81:使用Parallel简化同步状态下Task的使用

    建议81:使用Parallel简化同步状态下Task的使用 在命名空间System.Threading.Tasks中,有一个静态类Parallel简化了在同步状态下的Task的操作.Parallel主 ...

  9. Gym - 100971J ——DFS

    Statements Vitaly works at the warehouse. The warehouse can be represented as a grid of n × mcells, ...

  10. Java中String、StringBuffer和StringBuilder之间的区别

    String在Java中是字符串常量 例如 String str = "abc"; str = str + 1; System.out.println(str); 结果将是abc1 ...