1.基本概念

后缀表示法也叫逆波兰表示法(前缀就是波兰表示法),由于所有的操作符都在操作数的后面,所以被称为后缀表示法。

中缀表示法的操作符在操作数之间,也是最符合人的逻辑。前缀表示法的操作符在操作数之前,它和后缀表示法一样,都是为了方便计算机计算,因为在后缀或前缀中没有括号,也不存在优先级处理的问题,直接利用栈进行计算。

示例:

中缀:5+(1+2)*4-3
后缀:512+4*+3-

2.中缀表示转后缀表示

中缀转后缀可以从左向右扫描表达式,然后按照规则进行处理,

对于中缀表达式a+(b+c)*d-e的转换步骤:

(1). 首先初始化两个栈:输出栈rpn_和操作符栈rpn_stack

(2). 从左至右扫描表达式,遇到操作数则直接压入输出栈,在遇到a时,由于是操作数,将"a"压入rpn_

(3). 继续扫描,遇到操作符时,如果该操作符优先级高于rpn_stack栈顶的操作符,则直接压入rpn_stack,如果同级或低于栈顶操作符,则将栈中操作符依次弹出(同时压入输出栈)直到遇到比当前操作符优先级低的(或者遇到了"("),然后压入操作符。(注意,对于操作符"(",只有")"才能将其弹出,其他情况不弹出"(")。现在我们扫描到了"+",由于当前的操作符栈空,直接压入。

(4). 然后读取到"(",由于它的优先级是最高的,只要遇到就直接压入栈。

(5). 然后读取到操作数"b",压入输出栈 rpn_。

(6). 继续读取到 "+" ,当前操作符栈的栈顶是"(",因为只有")"才能将其弹出,所以"+"入栈。

(7). 读取的"c"压入输出栈。

(8). 读取到了")",此时开始将操作符栈的操作符依次弹出(同时压入输出栈),直到遇到第一个"(",将"("弹出。("("和")"都不能进入输出栈)

(9). 然后读取到" * ",当前操作符栈的栈顶是"+",优先级低于" * ",所以直接压入栈。

(10). 读取的"d"压入输出栈

(11). 读取到"-",当前栈顶是" * ",比"-"的优先级高,所以" * "弹出(同时压入输出栈,下同),然后栈顶"+"的优先级和"-"相同,也要弹出。此时操作符栈空,"-"压入

(12). 读取到了"e",压入输出栈,此时表达式读取完毕,将操作符栈依次弹出并压入输出栈,完成了转换,输出为abc+d*+e-

以下是将中缀表达式转化为后缀表达式的代码:

// 比较操作符A和操作符B的优先级
bool opAisBiggerThanOpB(string opA, string opB)
{
if (opA == "*" || opA == "/" && opB != "*" && opB != "/" && opB!= "(")
return true;
else
return false;
} // 中缀表达式转后缀表达式
bool parseFormula(string formula)
{
vector<string> rpn_; // 总输出
vector<string> rpn_stack; // 符号堆栈
string sign_; // 临时保存操作数
for (int i = 0; i < formula.size(); ++i)
{
if (formula[i] != '+'&&formula[i] != '-'&&formula[i] != '*'&&formula[i] != '/' && formula[i] != '(' &&formula[i] != ')') // 如果是操作数的话就保存起来等待输出
{
sign_ += formula[i];
}
else
{
string t_formula;
t_formula += formula[i]; // 操作数输出
if (!sign_.empty())
{
rpn_.push_back(sign_);
sign_.clear(); // 清空,保存下一个操作数
} //操作符入栈
if (t_formula == ")")
{
while (rpn_stack[rpn_stack.size() - 1] != "(")
{
if (rpn_stack.empty())
return false;
rpn_.push_back(rpn_stack[rpn_stack.size() - 1]);
rpn_stack.pop_back();
}
rpn_stack.pop_back(); }
else if (rpn_stack.empty())
rpn_stack.push_back(t_formula);
else if (t_formula == "(" || rpn_stack[rpn_stack.size() - 1] == "(")
rpn_stack.push_back(t_formula);
else if (opAisBiggerThanOpB(t_formula, rpn_stack[rpn_stack.size() - 1]))
rpn_stack.push_back(t_formula);
else
{
while (!opAisBiggerThanOpB(t_formula, rpn_stack[rpn_stack.size() - 1]) && rpn_stack[rpn_stack.size() - 1]!="(")
{ rpn_.push_back(rpn_stack[rpn_stack.size() - 1]);
rpn_stack.pop_back();
if (rpn_stack.empty())
break;
}
rpn_stack.push_back(t_formula);
} } // end else
} // end for // 处理最后的还留在暂存区的操作数和操作符
if (!sign_.empty())
rpn_.push_back(sign_);
if(!rpn_stack.empty())
{
for(int i = rpn_stack.size()-1;i>=0;--i)
rpn_.push_back(rpn_stack[i]);
} // 输出测试
string rpn;
for (int i = 0; i < rpn_.size(); ++i)
{
rpn += rpn_[i];
}
cout << rpn << endl; return true;
}

例如:parseFormula("5+((1+2)*4)-3");

输出为:512+4*+3-

3.后缀表达式的计算

对于后缀表达式:5 1 2 + 4 * + 3 -

(1). 首先建立一个栈 res 用来保存中间值,从左到右读取后缀表达式,遇到操作数直接入栈,遇到操作符则将栈顶的两个操作数弹出,完成计算后将计算结果压入栈。

(2). 首先读取了 5、1、2,将它们依次入栈,当前的栈:

res: 栈底 5 1 2 栈顶

(3). 然后读取到操作符"+",弹出2,然后弹出1,将1+2的运算结果3压入栈:

res: 栈底 5 3 栈顶

(4). 然后读取到的操作数"4"入栈,接着读取到" * ",如同上面,将4弹出,将3弹出,计算3*4然后将12压入栈。

(5). 后面的操作和前面一样。

(6). 结果:14

C++:后缀表达式的更多相关文章

  1. sicily 中缀表达式转后缀表达式

    题目描述 将中缀表达式(infix expression)转换为后缀表达式(postfix expression).假设中缀表达式中的操作数均以单个英文字母表示,且其中只包含左括号'(',右括号‘)’ ...

  2. 利用stack结构,将中缀表达式转换为后缀表达式并求值的算法实现

    #!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving with Algorithms and Da ...

  3. RPN-逆波兰计算器-中缀表达式转后缀表达式-javascript

    1.利用栈(Stack)来存储操作数和操作符: 2.包含中缀表达式转后缀表达式的函数,这个是难点,也是关键点: 2.1.将输入字符串转为数组: 2.2.对转换来的字符进行遍历:创建一个数组,用来给存储 ...

  4. 中缀表达式转后缀表达式(用于求字符串表达式值)(js栈和队列的实现是通过数组的push和unshift方法插值,pop方法取值)

    中缀表达式:就是我通常用的算术或逻辑公式: 后缀表达式:不包含括号,运算符放在两个运算对象后面,所有的计算按运算符出现的顺序,严格从左向右进行,不用考虑运算符优先级: 如,(2+1)*3 转换后,2 ...

  5. 洛谷 P1449 后缀表达式 Label:表达式计算系列

    题目描述 所谓后缀表达式是指这样的一个表达式:式中不再引用括号,运算符号放在两个运算对象之后,所有计算按运算符号出现的顺序,严格地由左而右新进行(不用考虑运算符的优先级). 如:3*(5–2)+7对应 ...

  6. Java堆栈的应用2----------中缀表达式转为后缀表达式的计算Java实现

    1.堆栈-Stack 堆栈(也简称作栈)是一种特殊的线性表,堆栈的数据元素以及数据元素间的逻辑关系和线性表完全相同,其差别是线性表允许在任意位置进行插入和删除操作,而堆栈只允许在固定一端进行插入和删除 ...

  7. 数据结构Java实现06----中缀表达式转换为后缀表达式

    本文主要内容: 表达式的三种形式 中缀表达式与后缀表达式转换算法 一.表达式的三种形式: 中缀表达式:运算符放在两个运算对象中间,如:(2+1)*3.我们从小做数学题时,一直使用的就是中缀表达式. 后 ...

  8. javascript使用栈结构将中缀表达式转换为后缀表达式并计算值

    1.概念 你可能听说过表达式,a+b,a+b*c这些,但是前缀表达式,前缀记法,中缀表达式,波兰式,后缀表达式,后缀记法,逆波兰式这些都是也是表达式. a+b,a+b*c这些看上去比较正常的是中缀表达 ...

  9. 《java数据结构与算法》笔记-CH4-8栈结构实现后缀表达式计算结果

    /** * 中缀表达式转换成后缀表达式: 从输入(中缀表达式)中读取的字符,规则: 操作数: 写至输出 左括号: 推其入栈 右括号: 栈非空时重复以下步骤--> * 若项不为(,则写至输出: 若 ...

  10. 栈的应用1——超级计算器(中缀与后缀表达式)C语言

    这里要学的程序主要用来实现一个功能——输入表达式输出结果,也就是一个计算器.效果如下: 这个程序主要有两个步骤:1.把中缀表达式转换为后缀表达式:2.计算后缀表达式的结果. 首先先明白几个问题: 1. ...

随机推荐

  1. CCF 权限查询(模拟)

    试题编号: 201612-3 试题名称: 权限查询 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 授权 (authorization) 是各类业务系统不可缺少的组成部分,系统 ...

  2. vuex是什么?怎么用,例子

    什么是vuex? 官方的解释是:Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化. 为什么要用 ...

  3. Gym - 100548H The Problem to Make You Happy 2014-2015 ACM-ICPC, Asia Xian Regional Contest (BFS+博弈)

    题意:Bob和Alice在一张有向无环图上移动,给定二者的起点,Bob先手.Bob的失败条件是不能移动或者与Alice相遇.两个人都采取最优策略,求Bob是否会赢 分析:银牌题.先确定所有的失败状态, ...

  4. JQuery EasyUI 扩展方法 日期控件 设置时间段函数

    /** Jquery扩展方法--by hgx 2018年1月8日-- * 设置时间段函数,开始时间(1号)与结束时间(当前日期) * 传入参数:--spaceMonth:查询间隔月,1为间隔查询一个月 ...

  5. Eclipase .自动提示

    打开eclipse→Windows→Preferences→Java→Editor→Content Assist 修改Auto Activation triggers for java的值为 .abc ...

  6. 【GZAdmin】开源BS demo快速搭建

    下载搭建项目:链接:https://pan.baidu.com/s/1jHZ3Kkm 密码:5k4q 项目源码: GZAdmin_API:https://github.com/GarsonZhang/ ...

  7. kdump+crash

    参考:http://www.360doc.com/content/19/0205/08/36367108_813163495.shtml https://blog.csdn.net/u01436103 ...

  8. 为什么Eureka Client获取服务实例这么慢

    1. Eureka Client注册延迟 Eureka Client启动后不会立即向Eureka Server注册,而是有一个延迟时间,默认为40s 2. Eureka Server更新响应缓存 Eu ...

  9. chrome 获得点击按钮时的事件

    初次了解浏览器高级点的功能,原来这么强 想了解点击一个网页的按钮时触发了什么事件,firefox chrome确实很强大,基本可以监控所有内容 以chrome为例: 在按钮上 右键检查 或者 F12  ...

  10. python之subprocess

    官网介绍:https://docs.python.org/3/library/subprocess.html Popen(): [root@oracle scripts]# cat sub_popen ...