ZS the Coder and Chris the Baboon arrived at the entrance of Udayland. There is a n × n magic grid on the entrance which is filled with integers. Chris noticed that exactly one of the cells in the grid is empty, and to enter Udayland, they need to fill a positive integer into the empty cell.

Chris tried filling in random numbers but it didn’t work. ZS the Coder realizes that they need to fill in a positive integer such that the numbers in the grid form a magic square. This means that he has to fill in a positive integer so that the sum of the numbers in each row of the grid (), each column of the grid (), and the two long diagonals of the grid (the main diagonal — and the secondary diagonal — ) are equal.

Chris doesn’t know what number to fill in. Can you help Chris find the correct positive integer to fill in or determine that it is impossible?

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 500) — the number of rows and columns of the magic grid.

n lines follow, each of them contains n integers. The j-th number in the i-th of them denotes ai, j (1 ≤ ai, j ≤ 109 or ai, j = 0), the number in the i-th row and j-th column of the magic grid. If the corresponding cell is empty, ai, j will be equal to 0. Otherwise, ai, j is positive.

It is guaranteed that there is exactly one pair of integers i, j (1 ≤ i, j ≤ n) such that ai, j = 0.

Output

Output a single integer, the positive integer x (1 ≤ x ≤ 1018) that should be filled in the empty cell so that the whole grid becomes a magic square. If such positive integer x does not exist, output  - 1 instead.

If there are multiple solutions, you may print any of them.

Example:

Input:

3

4 0 2

3 5 7

8 1 6

Output

9

Input:

4

1 1 1 1

1 1 0 1

1 1 1 1

1 1 1 1

Output

1

Input:

4

1 1 1 1

1 1 0 1

1 1 2 1

1 1 1 1

Output

-1

Note

In the first sample case, we can fill in 9 into the empty cell to make the resulting grid a magic square. Indeed,

The sum of numbers in each row is:

4 + 9 + 2 = 3 + 5 + 7 = 8 + 1 + 6 = 15.

The sum of numbers in each column is:

4 + 3 + 8 = 9 + 5 + 1 = 2 + 7 + 6 = 15.

The sum of numbers in the two diagonals is:

4 + 5 + 6 = 2 + 5 + 8 = 15.

In the third sample case, it is impossible to fill a number in the empty square such that the resulting grid is a magic square.

//可以说是考逻辑的题吧,特别注意的是要特判n=1的时候的情况
//先把数独的每行每列的和存储在两个数组中,然后找出最大和最小值的差ans,
//如果最大值减去最小值小于0的话,则证明不存在一个数可以满足条件,则输出-1,
//如果ans大于0的话,就把ans补在那个为0的地方,注意这是要用两个空数组把每一行和每一列的和
//存起来,可以把之前的b,c两个数组清0存储,然后再把两个对角线加起来,分别判断两个对角线的值是否
//和之前的最大值相等,b[i]和c[i]是否和最大值相等
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std; const int INF=1e9+7;
const int maxn=510;
typedef long long ll; int n;
ll b[maxn],c[maxn];
ll a[maxn][maxn];
ll x,y,ans,minn,maxx,sum1,sum2; int main()
{
scanf("%d",&n);
ll i,j;
ans=sum1=sum2=0;
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(c,0,sizeof(c));
for(i=0; i<n; i++)
{
for(j=0; j<n; j++)
{
scanf("%I64d",&a[i][j]);
b[i]+=a[i][j];
c[j]+=a[i][j];
if(a[i][j]==0)
{
x=i;
y=j;
}
}
}
minn=maxx=0;
for(i=0; i<n; i++)
{
if(i!=x) maxx=b[i];
else minn=b[i];
}
ans=maxx-minn;
if(n==1)
{
printf("1\n");
return 0;
}
if(ans<=0)
{
printf("-1\n");
return 0;
}
a[x][y]=ans;
memset(b,0,sizeof(b));
memset(c,0,sizeof(c));
for(i=0; i<n; i++)
{
for(j=0; j<n; j++)
{
if(i==j) sum1+=a[i][j];
if(i==n-1-j)sum2+=a[i][j];
b[i]+=a[i][j];
c[j]+=a[i][j];
}
} if(sum1!=maxx||sum2!=maxx)
{
printf("-1\n");
return 0;
}
for(i=0; i<n; i++)
{
if(b[i]!=maxx||c[i]!=maxx)
{
printf("-1\n");
return 0;
}
}
printf("%I64d\n",ans);
return 0;
}

Chris and Magic Square CodeForces - 711B的更多相关文章

  1. codeforces 711B B. Chris and Magic Square(水题)

    题目链接: B. Chris and Magic Square 题意: 问在那个空位子填哪个数可以使行列对角线的和相等,就先找一行或者一列算出那个数,再验证是否可行就好; AC代码: #include ...

  2. Codeforces Round #369 (Div. 2) B. Chris and Magic Square 水题

    B. Chris and Magic Square 题目连接: http://www.codeforces.com/contest/711/problem/B Description ZS the C ...

  3. Codeforces Round #369 (Div. 2) B. Chris and Magic Square (暴力)

    Chris and Magic Square 题目链接: http://codeforces.com/contest/711/problem/B Description ZS the Coder an ...

  4. B. Chris and Magic Square

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  5. codeforces 711B - Chris and Magic Square(矩阵0位置填数)

    题目链接:http://codeforces.com/problemset/problem/711/B 题目大意: 输入 n ,输入 n*n 的矩阵,有一个占位 0 , 求得将 0 位置换成其他的整数 ...

  6. 【模拟】Codeforces 711B Chris and Magic Square

    题目链接: http://codeforces.com/problemset/problem/711/B 题目大意: N*N的矩阵,有且只有一个0,求要把这个矩阵变成幻方要填什么正数.无解输出-1.幻 ...

  7. 【codeforces 711B】Chris and Magic Square

    [题目链接]:http://codeforces.com/contest/711/problem/B [题意] 让你在矩阵中一个空白的地方填上一个正数; 使得这个矩阵两个对角线上的和; 每一行的和,每 ...

  8. CodeForces 711B Chris and Magic Square (暴力,水题)

    题意:给定n*n个矩阵,其中只有一个格子是0,让你填上一个数,使得所有的行列的对角线的和都相等. 析:首先n为1,就随便填,然后就是除了0这一行或者这一列,那么一定有其他的行列是完整的,所以,先把其他 ...

  9. CodeForces 711B Chris and Magic Square

    简单题. 找一个不存在$0$的行,计算这行的和(记为$sum$),然后就可以知道$0$那个位置应该填的数字(记为$x$). 如果$x<=0$,那么无解,否则再去判断每一行,每一列以及两个斜对角的 ...

随机推荐

  1. 【BZOJ】3052: [wc2013]糖果公园 树分块+带修改莫队算法

    [题目]#58. [WC2013]糖果公园 [题意]给定n个点的树,m种糖果,每个点有糖果ci.给定n个数wi和m个数vi,第i颗糖果第j次品尝的价值是v(i)*w(j).q次询问一条链上每个点价值的 ...

  2. 【VIJOS】P1512 SuperBrother打鼹鼠

    [算法]二维树状数组 [题解] 1.树状数组尽量不要出现0,因此所有坐标+1 2.面积求法(默认1开始):(x1,y1)(x2,y2)=sum(x2,y2)-sum(x1-1,y2)-sum(x2,y ...

  3. PHP脚本运行时间

    http://www.cnblogs.com/zqifa/p/php-16.html PHP设置脚本最大执行时间的三种方法 php.ini 中缺省的最长执行时间是 30 秒,这是由 php.ini 中 ...

  4. 【洛谷 P3965】 [TJOI2013]循环格(费用流)

    题目链接 回路限制经典题. 每个点拆成入点和出点,源点连每个点的出点,流量1,费用0,每个点出点连汇点,流量1,费用0,入点和出点之间没有边. 也就是说每个点必须靠其他点流来的流量来流入汇点,同时自己 ...

  5. 【总结】前端必须收藏的CSS3动效库!!!

    现在的网站和App的设计中越来越重视用户体验,而优秀的动效则能使你的应用更具交互性,从而吸引更多用户的使用. 如果你对CSS3中定义动效还不熟练,或希望采用更加简单直接的方式在你的应用中引入动效的话, ...

  6. python基础===用9种方式生成新的对象

    class Point: def __init__(self, x, y): self.x = x self.y = y point1 = Point(1, 2) point2 = eval(&quo ...

  7. caffe Python API 之Inference

    #以SSD的检测测试为例 def detetion(image_dir,weight,deploy,resolution=300): caffe.set_mode_gpu() net = caffe. ...

  8. SpringBoot微服务

    在企业级软件的架构模型上,我们主要讨论下SOA与微服务架构. SOA的全称是Service-Oriented Architecture,可译为“面向服务的架构”,它是一个组件模型,将应用程序的不同功能 ...

  9. Java-悲观锁和乐观锁

    Java中的乐观锁与悲观锁: 1. Java中典型的synchronized就是一种悲观锁,也就是独占锁,不过JDK1.6之后对synchronized已经做了许多优化,也不能说是完全的悲观锁了: 2 ...

  10. fedroa20 没法开启ntpd服务器

    1现象:ntpd老是没法开启,ntpd -d显示有个进程占用123端口. [root@vd13crmtb01 ~]# systemctl enable ntpd.service         //开 ...