题目大意:
  告诉你一个数n,求满足φ^x(n)=1的x。

思路:
  首先我们可以发现满足φ(n)=1的数只有2,也就是说你得到最终的结果,最后一步肯定是φ(2)。
  同时,可以发现φ(φ(2^k))=φ(2^(k-1)),因为1~2^k中间有且仅有奇数与2^k互质,个数是2^(k-1)个。
  φ是个积性函数,也就是说φ(n)=φ(p1^q1)*φ(p2^q2)*...*φ(pm^qm)。
  对于只有一种质因数的n, φ(n)=φ(p^q)=p^q*(1-1/p)=(p-1)*(p^q-1)。
  因此我们可以发现,每次φ下去的时候都会往里面加若干个质因数2,而对于偶数,每次会消掉一个质因数2。
  由于我们最后得到答案都要经过φ(2),原问题转化为可以消掉多少个2,也就是总共会产生多少个2。
  预处理出每个质因数最后能分解出多少个2,累加起来就是总共要消灭的2的个数。
  预处理的时候可以用类似于线性筛的方法做。
  注意如果一开始就没有质因数2,那就要多花一步来得到一个2。

 #include<cstdio>
#include<cctype>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int P=,N=;
int f[P],prime[N],cnt;
inline void pret() {
f[]=;
for(register int i=;i<P;i++) {
if(!f[i]) {
prime[cnt++]=i;
f[i]=f[i-];
}
for(register int j=;j<cnt;j++) {
if(i*prime[j]>=P) break;
f[i*prime[j]]=f[i]+f[prime[j]];
if(!(i%prime[j])) break;
}
}
}
int main() {
pret();
for(register int T=getint();T;T--) {
int64 ans=;
for(register int m=getint();m;m--) {
const int p=getint(),q=getint();
ans+=(int64)f[p]*q;
if(p==) ans--;
}
printf("%lld\n",ans);
}
return ;
}

[HAOI2012]外星人的更多相关文章

  1. Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 568  Solved: 302[Submit][Status][ ...

  2. BZOJ2749: [HAOI2012]外星人

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 377  Solved: 199[Submit][Status] ...

  3. 【BZOJ 2749】 2749: [HAOI2012]外星人 (数论-线性筛?类积性函数)

    2749: [HAOI2012]外星人 Description Input Output 输出test行,每行一个整数,表示答案. Sample Input 1 2 2 2 3 1 Sample Ou ...

  4. 【bzoj2749】[HAOI2012]外星人

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 677  Solved: 360[Submit][Status][ ...

  5. BZOJ2749 HAOI2012外星人(数论)

    不妨把求φ抽象成把将每个位置上的一个小球左移一格并分裂的过程,那么即求所有球都被移到1号格子的步数. 显然要达到1必须先到达2.可以发现每次分裂一定会分裂出2号位的球,因为2以外的质数一定是奇数.以及 ...

  6. JZYZOJ1524 [haoi2012]外星人 欧拉函数

    http://172.20.6.3/Problem_Show.asp?id=1524 大概可以算一个结论吧,欧拉函数在迭代的时候,每次迭代之后消去一个2,每个非2的质因子迭代一次又(相当于)生成一个2 ...

  7. 题解 P2350 【[HAOI2012]外星人】

    题目链接 还是本宝宝写题解的一贯习惯 $ :$ 先吐槽吐槽这道题$……$ 相信不少同学第一眼一定没有看懂题.(因为我也没看懂) ~~初中~~数学知识: 对于函数 $ f(x)$ 有 $f^{-1}(x ...

  8. 2749: [HAOI2012]外星人

    首先像我一样把柿子画出来或者看下hint 你就会发现其实是多了个p-1这样的东东 然后除非是2他们都是偶数,而2就直接到0了 算一下2出现的次数就好 #include<cstdio> #i ...

  9. BZOJ 2749 [HAOI2012]外星人

    题解:对每一个>2的质数分解,最后统计2的个数 注意:如果一开始没有2则ans需+1,因为第一次求phi的时候并没有消耗2 WA了好几遍 #include<iostream> #in ...

随机推荐

  1. E - Is It A Tree? 并查集判断是否为树

    题目链接:https://vjudge.net/contest/271361#problem/E 具体思路:运用并查集,每一次连接上一个点,更新他的父亲节点,如果父亲节点相同,则构不成树,因为入读是2 ...

  2. weblogic 包里面有中文文件名 会报错

    目前:没有解决,只要有中文启动就报错 http://bbs.csdn.net/topics/10055670 http://www.2cto.com/os/201406/311394.html

  3. ISG2018 web题Writeup

    0x01.命令注入 这题可以使用burpsuite扫出来,但是可能需要测一下. 得知payload为:i%7cecho%20gzavvlsv9c%20q9szmriaiy%7c%7ca%20%23'% ...

  4. Linux下帮助命令

    帮助命令(各种命令区别)   最常用的帮助命令   help --help help cd 查看内置命令的使用 info man   help cd 查看内置命令的使用   获得帮助的途径:   ma ...

  5. linux下的僵尸进程处理SIGCHLD信号【转】

    转自:http://www.cnblogs.com/wuchanming/p/4020463.html 什么是僵尸进程? 首先内核会释放终止进程(调用了exit系统调用)所使用的所有存储区,关闭所有打 ...

  6. android 系统的休眠与唤醒+linux 系统休眠

    Android休眠与唤醒驱动流程分析 标准Linux休眠过程: powermanagement notifiers are executed with PM_SUSPEND_PREPARE tasks ...

  7. 全面了解 Nginx 主要应用场景

    前言 本文只针对Nginx在不加载第三方模块的情况能处理哪些事情,由于第三方模块太多所以也介绍不完,当然本文本身也可能介绍的不完整,毕竟只是我个人使用过和了解到过得.所以还请见谅,同时欢迎留言交流 N ...

  8. 21.Merge Two Sorted Lists---《剑指offer》面试17

    题目链接:https://leetcode.com/problems/merge-two-sorted-lists/description/ 题目大意: 给出两个升序链表,将它们归并成一个链表,若有重 ...

  9. 关于Java代码优化的35条建议

    代码优化,一个很重要的课题.可能有些人觉得没用,一些细小的地方有什么好修改的,改与不改对于代码的运行效率有什么影响呢?这个问题我是这么考虑的,就像大海里面的鲸鱼一样,它吃一条小虾米有用吗?没用,但是, ...

  10. Linux中涉及到环境变量的文件

    1. 系统级 (a) /etc/profile : 在用户登录操作系统时,定制用户环境的第一个文件,应用于登录的每一个用户 ==> 该文件一般调用/etc/bash.bashrc文件 (b)/e ...