Codeforces 1109D. Sasha and Interesting Fact from Graph Theory
Codeforces 1109D. Sasha and Interesting Fact from Graph Theory
解题思路:
这题我根本不会做,是周指导带飞我.
首先对于当前已经有 \(m\) 个联通块的有标号生成树的数量是
\]
其中 \(size_i\) 是第 \(i\) 个联通块的大小.
原理就是考虑 \(prufer\) 编码,先把每个联通块看成一个点,那么序列中每出现一个第 \(i\) 联通块缩成的点,能连的边的数量是 \(size[i]\) ,所以序列每一位的方案数是 \(\sum size[i]=n\),考虑每一个点的度数是在序列中的出现次数\(+1\),所以对于每一个联通块还要补上一条连边的方案数.
然后这个题相当于就是确定了一条链,在剩下 \(n-i-2\) 个联通块的基础上求有标号生产树数量,其中 \(i\) 是 \(a,b\) 之间的点数,根据上面的式子,可以得到答案的式子
\]
code
/*program by mangoyang*/
#include <bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
#define int ll
const int N = 10000005, mod = 1e9+7;
int js[N], inv[N], n, m, a, b, ans;
inline int Pow(int a, int b){
if(b == -1) b = mod - 2;
int ans = 1;
for(; b; b >>= 1, a = a * a % mod)
if(b & 1) ans = ans * a % mod;
return ans;
}
inline int C(int x, int y){
if(x < y) return 0;
return js[x] * inv[y] % mod * inv[x-y] % mod;
}
signed main(){
read(n), read(m), read(a), read(b);
js[0] = inv[0] = 1;
for(int i = 1; i <= max(n, m); i++)
js[i] = js[i-1] * i % mod, inv[i] = Pow(js[i], mod - 2);
for(int i = 0; i <= n - 2; i++)
(ans += C(m - 1, i) * C(n - 2, i) % mod * js[i] % mod * Pow(n, n - i - 3) % mod * (i + 2) % mod * Pow(m, n - i - 2) % mod) %= mod;
cout << ans << endl;
return 0;
}
Codeforces 1109D. Sasha and Interesting Fact from Graph Theory的更多相关文章
- Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学
Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就 ...
- Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 排列组合,Prufer编码
原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109D.html 题意 所有边权都是 [1,m] 中的整数的所有 n 个点的树中,点 a 到点 b 的距离 ...
- CF1109D Sasha and Interesting Fact from Graph Theory
CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...
- Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)
大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...
- Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)
题目链接:传送门 思路: 计数.树的结构和边权的计数可以分开讨论. ①假设从a到b的路径上有e条边,那么路径上就有e-1个点.构造这条路径上的点有$A_{n-2}^{e-1}$种方案: ②这条路径的权 ...
- CF1109DSasha and Interesting Fact from Graph Theory(数数)
题面 传送门 前置芝士 Prufer codes与Generalized Cayley's Formula 题解 不行了脑子已经咕咕了连这么简单的数数题都不会了-- 首先这两个特殊点到底是啥并没有影响 ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces 703D Mishka and Interesting sum 离线+树状数组
链接 Codeforces 703D Mishka and Interesting sum 题意 求区间内数字出现次数为偶数的数的异或和 思路 区间内直接异或的话得到的是出现次数为奇数的异或和,要得到 ...
- CodeForces 840B - Leha and another game about graph | Codeforces Round #429(Div 1)
思路来自这里,重点大概是想到建树和无解情况,然后就变成树形DP了- - /* CodeForces 840B - Leha and another game about graph [ 增量构造,树上 ...
随机推荐
- Javascript判断Chrome浏览器
今天分享一下如何通过Javascript来判断Chrome浏览器,这里是通过userAgent判断的,检测一下userAgent返回的字符串里面是否包含“Chrome”, 具体怎么检测是通过index ...
- 【CodeForces】790 C. Bear and Company 动态规划
[题目]C. Bear and Company [题意]给定大写字母字符串,交换相邻字符代价为1,求最小代价使得字符串不含"VK"子串.n<=75. [算法]动态规划 [题解 ...
- 【CF343D】 Water Tree(树链剖分)
题目链接 树剖傻逼题,练练手好久没写树剖了. 查询忘记\(pushdown\)抓了好久虫.. 全文手写,一遍过... #include <cstdio> const int MAXN = ...
- 【leetcode 简单】第三十九题 Excel表列名称
给定一个正整数,返回它在 Excel 表中相对应的列名称. 例如, 1 -> A 2 -> B 3 -> C ... 26 -> Z 27 -> AA 28 -> ...
- html 中的列表
html 中列表可以分为 1. 无序列表(ul--li 的形式) 2. 有序列表(ol li的形式) 3. 定义列表(dl 的形式) 下面来看几种列表的具体内容: 1.无序列表. 无序列表的格式 ...
- [网站安全] [实战分享]WEB漏洞挖掘的一些经验分享
WEB漏洞有很多种,比如SQL注入,比如XSS,比如文件包含,比如越权访问查看,比如目录遍历等等等等,漏洞带来的危害有很多,信息泄露,文件上传到GETSHELL,一直到内网渗透,这里我想分享的最主要的 ...
- 常见踩坑案例(一) subList引起FULLGC
计划真的赶不上变化,时间过得真快.废话不多说了,今天主要记录之前有同事遇到的一些坑分享出来. 一.封装类的应用会引起NPE异常 对于其他对象的应用,一般在使用之前会判断它是否为空,如果不为空才会使用它 ...
- Java错误提示:Syntax error, insert "}" to complete Block
从网上复制了一段java代码到Eclipse里面,调整了一下格式,把Eclipse提示的明显有问题的地方,主要是空格,删掉了,但还是在最后一个分号那里提示“Syntax error, insert & ...
- MySQL5.6 新特性之GTID【转】
转自 MySQL5.6 新特性之GTID - jyzhou - 博客园http://www.cnblogs.com/zhoujinyi/p/4717951.html 背景: MySQL5.6在5.5的 ...
- Python如何实现文本转语音
准备 我测试使用的Python版本为2.7.10,如果你的版本是Python3.5的话,这里就不太适合了. 使用Speech API 原理 我们的想法是借助微软的语音接口,所以我们肯定是要进行调用 相 ...