对于每个线段拆成两个点,如同之前一样建图,由于可能出现垂直于x轴的

所以建图由i指向i~

继续最小费用最大流

By:大奕哥

 #include<bits/stdc++.h>
using namespace std;
const int N=,inf=1e9;
int head[N],d[N],f[N],l1[N],r1[N],l2[N],r2[N],a[N],s=1e9,t,n,k,cnt=-;
long long cost;
bool v[N];
struct node{
int to,nex,f,w,c;
}e[];
void add(int x,int y,int w,int c)
{
e[++cnt].to=y;e[cnt].w=w;e[cnt].f=x;e[cnt].c=c;e[cnt].nex=head[x];head[x]=cnt;
e[++cnt].to=x;e[cnt].w=;e[cnt].f=y;e[cnt].c=-c;e[cnt].nex=head[y];head[y]=cnt;
}
queue<int>q;
bool spfa()
{
memset(f,-,sizeof(f));
memset(d,0x3f,sizeof(d));
memset(v,,sizeof(v));
d[s]=;v[s]=;q.push(s);
while(!q.empty())
{
int x=q.front();q.pop();v[x]=;
for(int i=head[x];i!=-;i=e[i].nex)
{
int y=e[i].to;
if(d[y]<=d[x]+e[i].c||!e[i].w)continue; d[y]=d[x]+e[i].c;f[y]=i;
if(!v[y])q.push(y),v[y]=;
}
}
if(d[t]>1e9)return ;
int flow=inf;
for(int i=f[t];i!=-;i=f[e[i].f])
flow=min(flow,e[i].w);
for(int i=f[t];i!=-;i=f[e[i].f])
e[i].w-=flow,e[i^].w+=flow,cost+=1ll*e[i].c*flow;
return ;
}
int main()
{
scanf("%d%d",&n,&k);int num=;
memset(head,-,sizeof(head));
for(int i=;i<=n;++i)
{
scanf("%d%d%d%d",&l1[i],&r1[i],&l2[i],&r2[i]);
a[++num]=l1[i];a[++num]=l2[i];
}
sort(a+,a++num);
num=unique(a+,a++num)-a-;
for(int i=;i<=n;++i)
{
int x=sqrt(1ll*(l1[i]-l2[i])*(l1[i]-l2[i])+1ll*(r2[i]-r1[i])*(r2[i]-r1[i]));
l1[i]=lower_bound(a+,a++num,l1[i])-a;
l2[i]=lower_bound(a+,a++num,l2[i])-a;
if(l1[i]!=l2[i])
add((l1[i]<<)|,l2[i]<<,,-x);
else
add(l1[i]<<,(l2[i]<<)|,,-x);
}
for(int i=;i<num;++i)
{
add((i<<)|,i+<<,inf,);
add(i<<,(i<<)|,inf,);
}
add(num<<,(num<<)|,inf,);
t=num*+;
add((num<<)|,t,k,);
add(,,k,);s=;
while(spfa());
printf("%lld\n",-cost);
return ;
}

网络流24题之最长k可重线段集问题的更多相关文章

  1. 【网络流24题】最长k可重线段集(费用流)

    [网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...

  2. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  3. *LOJ#6227. 「网络流 24 题」最长k可重线段集问题

    $n \leq 500$条平面上的线段,问一种挑选方法,使得不存在直线$x=p$与挑选的直线有超过$k$个交点,且选得的直线总长度最长. 横坐标每个点开一个点,一条线段就把对应横坐标连一条容量一费用( ...

  4. 【网络流24题】最长k可重区间集(费用流)

    [网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...

  5. LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   ...

  6. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  7. 【网络流24题】最长k可重区间集问题(费用流)

    [网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...

  8. 网络流24题:最长 k 可重区间集问题题解

    最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...

  9. 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集

    题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...

随机推荐

  1. LintCode 402: Continuous Subarray Sum

    LintCode 402: Continuous Subarray Sum 题目描述 给定一个整数数组,请找出一个连续子数组,使得该子数组的和最大.输出答案时,请分别返回第一个数字和最后一个数字的下标 ...

  2. 51nod1110 距离之和最小 V3

    基准时间限制:1 秒 空间限制:131072 KB 分值: 40  X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].该点到其他点的带权距离 = 实际距离 * 权值.求X轴上 ...

  3. vue安装说明

    1.安装node.js(http://www.runoob.com/nodejs/nodejs-install-setup.html) --以下操作在nodejs安装路径下进行(记得不要在C盘)-- ...

  4. 简易版jquery

    最近写了一个简易版的jquery   github地址:https://github.com/jiangzhenfei/Easy-Jquery 完成的方法: 1.$('#id') 2.extend扩展 ...

  5. Linux 下解决安装多个node冲突的问题(重新安装node)

    一个系统中不经意安装了多个node版本,结果更新后还是原来的版本,下面思考一下解决办法: 敲黑板: 1. nodejs 用 包管理器安装一般在 /usr/local/bin 2. 查看当前目录下的no ...

  6. mysq配置

    mysql运维 1.mysql配置文件:/etc/my.cnf mysql日记文件 :安装时候配置的,可以通过ps aux|grep mysqld 查询 ps aux|grep mysqld mysq ...

  7. 自动化测试===adb 解锁手机的思路

    在adb里有模拟按键/输入的命令 比如使用 adb shell input keyevent <keycode> 命令,不同的 keycode 能实现不同的功能,完整的 keycode 列 ...

  8. 013 GC机制

    本文转自:https://www.cnblogs.com/shudonghe/p/3457990.html 最近还是在找工作,在面试某移动互联网公司之前认为自己对Java的GC机制已经相当了解,其他面 ...

  9. ThoughtWorks代码挑战——FizzBuzzWhizz游戏 通用高速版(C/C++ & C#)

    最早看到这个题目是从@ 程序媛想事儿(Alexia) 的 最难面试的IT公司之ThoughtWorks代码挑战——FizzBuzzWhizz游戏 开始的,然后这几天陆陆续续有N个小伙伴发表了自己的文章 ...

  10. javascript你不知道的This

    <你不知道的javascript>这本书读了有好几遍了,似乎每一次读都有新发现,有些内容并不是一下子可以弄懂的,每次读似乎都能明白一些概念.再重读一下this关键字.这个概念非常灵活,也非 ...