网络流24题之最长k可重线段集问题
对于每个线段拆成两个点,如同之前一样建图,由于可能出现垂直于x轴的
所以建图由i指向i~
继续最小费用最大流
By:大奕哥
#include<bits/stdc++.h>
using namespace std;
const int N=,inf=1e9;
int head[N],d[N],f[N],l1[N],r1[N],l2[N],r2[N],a[N],s=1e9,t,n,k,cnt=-;
long long cost;
bool v[N];
struct node{
int to,nex,f,w,c;
}e[];
void add(int x,int y,int w,int c)
{
e[++cnt].to=y;e[cnt].w=w;e[cnt].f=x;e[cnt].c=c;e[cnt].nex=head[x];head[x]=cnt;
e[++cnt].to=x;e[cnt].w=;e[cnt].f=y;e[cnt].c=-c;e[cnt].nex=head[y];head[y]=cnt;
}
queue<int>q;
bool spfa()
{
memset(f,-,sizeof(f));
memset(d,0x3f,sizeof(d));
memset(v,,sizeof(v));
d[s]=;v[s]=;q.push(s);
while(!q.empty())
{
int x=q.front();q.pop();v[x]=;
for(int i=head[x];i!=-;i=e[i].nex)
{
int y=e[i].to;
if(d[y]<=d[x]+e[i].c||!e[i].w)continue; d[y]=d[x]+e[i].c;f[y]=i;
if(!v[y])q.push(y),v[y]=;
}
}
if(d[t]>1e9)return ;
int flow=inf;
for(int i=f[t];i!=-;i=f[e[i].f])
flow=min(flow,e[i].w);
for(int i=f[t];i!=-;i=f[e[i].f])
e[i].w-=flow,e[i^].w+=flow,cost+=1ll*e[i].c*flow;
return ;
}
int main()
{
scanf("%d%d",&n,&k);int num=;
memset(head,-,sizeof(head));
for(int i=;i<=n;++i)
{
scanf("%d%d%d%d",&l1[i],&r1[i],&l2[i],&r2[i]);
a[++num]=l1[i];a[++num]=l2[i];
}
sort(a+,a++num);
num=unique(a+,a++num)-a-;
for(int i=;i<=n;++i)
{
int x=sqrt(1ll*(l1[i]-l2[i])*(l1[i]-l2[i])+1ll*(r2[i]-r1[i])*(r2[i]-r1[i]));
l1[i]=lower_bound(a+,a++num,l1[i])-a;
l2[i]=lower_bound(a+,a++num,l2[i])-a;
if(l1[i]!=l2[i])
add((l1[i]<<)|,l2[i]<<,,-x);
else
add(l1[i]<<,(l2[i]<<)|,,-x);
}
for(int i=;i<num;++i)
{
add((i<<)|,i+<<,inf,);
add(i<<,(i<<)|,inf,);
}
add(num<<,(num<<)|,inf,);
t=num*+;
add((num<<)|,t,k,);
add(,,k,);s=;
while(spfa());
printf("%lld\n",-cost);
return ;
}
网络流24题之最长k可重线段集问题的更多相关文章
- 【网络流24题】最长k可重线段集(费用流)
[网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- *LOJ#6227. 「网络流 24 题」最长k可重线段集问题
$n \leq 500$条平面上的线段,问一种挑选方法,使得不存在直线$x=p$与挑选的直线有超过$k$个交点,且选得的直线总长度最长. 横坐标每个点开一个点,一条线段就把对应横坐标连一条容量一费用( ...
- 【网络流24题】最长k可重区间集(费用流)
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
- LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- 【网络流24题】最长k可重区间集问题(费用流)
[网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...
- 网络流24题:最长 k 可重区间集问题题解
最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...
- 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集
题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...
随机推荐
- 【leetcode 简单】第十六题 二进制求和
给定两个二进制字符串,返回他们的和(用二进制表示). 输入为非空字符串且只包含数字 1 和 0. 示例 1: 输入: a = "11", b = "1" 输出: ...
- 分享6款国内、外开源PHP轻论坛CMS程序
第一.Startbbs Startbbs,一款国产个人兴趣分享的轻论坛程序,采用PHP+MYSQL架构,目前版本是V1.1.5,之前我也 有搭建使用过功能还是比较简单的,默认风格比较让普通用户接受,这 ...
- 【转载】如何解决failed to push some refs to git
在使用git 对源代码进行push到gitHub时可能会出错,信息如下 此时很多人会尝试下面的命令把当前分支代码上传到master分支上. $ git push -u origin master ...
- sicily 1259. Sum of Consecutive Primes
Description Some positive integers can be represented by a sum of one or more consecutive prime numb ...
- fsarchiver创建系统镜像(dd命令也可以)
fsarchiver简介 fsarchiver可以将整个文件系统的内容保存成一个压缩形式的归档文件,包含文件系统本身.所以用来做系统镜像是一个不错的选择,一旦系统崩溃但可以进入救援模式,我们就可以使用 ...
- Java集合里的一些“坑”
这里主要谈下Java集合在使用中容易被忽略.又容易出现的两个“坑”,一个是集合与数组互相转换,另一个是集合遍历删除.主要通过代码演示. 一.集合与数组互相转换中的“坑” //Test1.java pa ...
- C#子线程中更新ui
本文实例总结了C#子线程更新UI控件的方法,对于桌面应用程序设计的UI界面控制来说非常有实用价值.分享给大家供大家参考之用.具体分析如下: 一般在winform C/S程序中经常会在子线程中更新控件的 ...
- 根据名字杀死进程Killall
Killall命令可以用来给一个特定的进程发送一个信号.这个信号默认情况下是SIGTERM,但也可以由killall命令使用参数来指定其它信号.现在让我们通过一些实际的例子来看看这个命令的实际用法. ...
- PTP简介
PTP简介 在通信网络中,许多业务的正常运行都要求网络时钟同步,即整个网络各设备之间的时间或频率差保持在合理的误差水平内.网络时钟同步包括以下两个概念: l 时间同步:也叫相 ...
- 转- 阿里云、Amazon、Google云数据库方案架构与技术分析
「一切都会运行在云端」. 云时代早已来临,本文着眼于顶级云服务商云服务商的云数据库方案背后的架构,以及笔者最近观察到的一些对于云数据库有意义的工业界的相关技术的进展,希望读者能有所收获. 现在越来越多 ...