lucas定理 FOJ 2020 组合
Accept: 886 Submit: 2084
Time Limit: 1000 mSec Memory Limit : 32768
KB
Problem Description
Input
Output
Sample Input
Sample Output
#include<iostream>
using namespace std;
#include<cstdio>
#define ll long long
int t;
ll quick_mod(ll a,ll b,ll p)// a^b%p
{
a%=p;
ll ans=;
while(b)
{
if(b&)
{
b--;
ans=(ans*a)%p;
}
b>>=;
a=(a*a)%p;
}
return ans;
}
ll C(ll n, ll m,ll p)
{
if(m>n) return ;
ll ans=,a,b;
for(int i=;i<=m;++i)
{
a=(n+i-m)%p;
b=i%p;
ans=ans*(a*quick_mod(b,p-,p)%p)%p;
}
return ans;
}
ll lucas(ll n,ll m,ll p)
{
if(m==) return ;
return (lucas(n/p,m/p,p)*C(n%p,m%p,p))%p;
}
int main()
{
scanf("%d",&t);
while(t--)
{
ll n,m,p;
cin>>n>>m>>p;
cout<<lucas(n,m,p)<<endl;
}
return ;
}
预处理阶乘(有时可以加快速度,相乘时也要防止溢出):
/*事实上,这道题目预处理阶乘,反而会更慢,因为题目中n,m都是10^9,预处理已经接近超时了*/
#include<iostream>
using namespace std;
#include<cstdio>
#define S 10000000
#define ll long long
int t;
long long f[];
void yuchuli(ll p)
{
f[]=;
for(int i=;i<=S;++i)
f[i]=f[i-]*i%p;
}
ll quick_mod(ll a,ll b,ll p)
{
a%=p;
ll ans=;
while(b)
{
if(b&)
{
b--;
ans=(ans*a)%p;
}
b>>=;
a=(a*a)%p;
}
return ans;
}
ll C(ll n, ll m,ll p)
{
if(m>n) return ;
return (f[n]*quick(f[m]*f[n-m],p-,p))%p;
}
ll lucas(ll n,ll m,ll p)
{
if(m==) return ;
return (lucas(n/p,m/p,p)*C(n%p,m%p,p))%p;
}
int main()
{
scanf("%d",&t);
while(t--)
{
ll n,m,p;
cin>>n>>m>>p;
cout<<lucas(n,m,p)<<endl;
}
return ;
}
lucas定理 FOJ 2020 组合的更多相关文章
- 『Lucas定理以及拓展Lucas』
Lucas定理 在『组合数学基础』中,我们已经提出了\(Lucas\)定理,并给出了\(Lucas\)定理的证明,本文仅将简单回顾,并给出代码. \(Lucas\)定理:当\(p\)为质数时,\(C_ ...
- FZU 2020 组合 (Lucas定理)
题意:中文题. 析:直接运用Lucas定理即可.但是FZU好奇怪啊,我开个常数都CE,弄的工CE了十几次,在vj上还不显示. 代码如下: #pragma comment(linker, "/ ...
- Problem 2020 组合(FOJ)
Problem 2020 组合 Accept: 714 Submit: 1724Time Limit: 1000 mSec Memory Limit : 32768 KB Problem ...
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
- 快速求排列组合 lucas定理
对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况. 就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 一般lucas定理的p ...
- 【BZOJ4591】超能粒子炮·改(Lucas定理,组合计数)
题意: 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- 【BZOJ4403】序列统计(Lucas定理,组合计数)
题意:给定三个正整数N.L和R, 统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量. 输出答案对10^6+3取模的结果. 对于100%的数据,1≤N,L,R≤10^9,1≤T≤100, ...
- [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- CPC23-4-K. 喵喵的神数 (数论 Lucas定理)
喵喵的神∙数 Time Limit: 1 Sec Memory Limit: 128 MB Description 喵喵对组合数比較感兴趣,而且对计算组合数很在行. 同一时候为了追求有后宫的素养的生活 ...
随机推荐
- C - A New Function (整除分块 + 玄学优化)
题目链接:https://cn.vjudge.net/contest/270608#problem/C 题目大意:给你一个n,让你求从1->n中间每个数的因子之和(每个数在求因子的过程中不包括本 ...
- Python3 多进程
多进程(multiprocessing)的用法和多线程(threading)类似,里面的函数也一样,start()为启动函数,join() 等待该进程运行结束,每一个进程也是由它的父进程产生 1.简单 ...
- python进阶之内置函数和语法糖触发魔法方法
前言 前面已经总结了关键字.运算符与魔法方法的对应关系,下面总结python内置函数对应的魔法方法. 魔法方法 数学计算 abs(args):返回绝对值,调用__abs__; round(args): ...
- ECNA 2017
ECNA 2017 Abstract Art 题目描述:求\(n\)个多边形的面积并. solution 据说有模板. Craters 题目描述:给定\(n\)个圆,求凸包的周长. solution ...
- linux动态库编译和使用详细剖析 - 后续
引言 - 也许是修行 很久以前写过关于动态库科普文章, 废话反正是说了好多. 核心就是在 linux 上面玩了一下 dlopen : ) linux动态库编译和使用详细剖析 - https://www ...
- VMW虚拟机生成的文件说明
VMDK(VMWare Virtual Machine Disk Format)是虚拟机VMware创建的虚拟硬格式,文件存在于VMware文件系统中,被称为VMFS(虚拟机文件系统) NVRAM 非 ...
- /boot/grub/grub.conf 内容诠释
linux的启动配置文件GRUB启动时会在 /boot/grub 中寻找一个名字为grub.conf的配置文件,如果找不到此配置文件则不进入菜单模式而直接进入命令行模式. grub.conf是一个纯文 ...
- JMeter -----设置代理抓取web的HTTPS请求,“您的连接不是私密链接”的处理方案
出现如上截图的问题,已确定将网站的证书.jmeter的证书均安装完成,并未提示报错,但是在配置代理后,刷新网站抓取请求时总是提示如上报错 解决方案: 1.关闭电脑上的所有浏览器 2.打开“终端”运行: ...
- mongodb卸载再重装
标题就凸显了尴尬,是的,本地(ubuntu16.04)自带的mongodb太老了,想要装最新版的 卸载: sudo dpkg -P mongodb 然后下载新版的mongodb: https://m ...
- 【LOJ】 #2011. 「SCOI2015」情报传递
题解 一写过一交A的一道数据结构水题 我们发现大于C可以转化为这条路径上有多少个在某天之前开始调查的情报员,离线全部读入,变成树上路径查询某个区间的数出现过多少次,构建一棵根缀的主席树,查询的时候用两 ...