[BZOJ1005](HNOI 2008)明明的烦恼
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?
Input
第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
Output
一个整数,表示不同的满足要求的树的个数,无解输出0
Sample Input
1
-1
-1
Sample Output
HINT
两棵树分别为1-2-3;1-3-2
分析
好久没有更新题解了。。。
很容易看出这是一道组合计数题。然而……如果没有图论基础是很难想出怎样构造的。。。不过我在今年四月份刚“入门”OI的时候有幸看到了省队RealCS的题解,提前接触到了带标号无根树计数的“prufer数列“>_<所以这次很快就写出了正解~(prufer数列详见Matrix67 的blog:http://www.matrix67.com/blog/archives/682)
首先,由prufer数列的性质我们知道:对于一棵给定的无根树,任意一个节点在这棵树的prufer数列中出现次数等于这个节点的度数 - 1。那么根据题目中的条件,我们就可以得到一个可重集排列问题:给定每个数字出现次数,求满足条件的排列个数。对于没有给定度数的节点,我们可以将它们用空格代替。我们需要在已有的数列中插入若干个空格,每个空格中填入任意一个“没有给定度数”的节点。这样,我们只需将得出的“可重集排列”数乘上空格数量的cnt次方(此处cnt表示没有给定度数的节点种数)即可。
那么,基本的思路确定了,我们现在的问题就是如何高效地计算可重集排列数了。根据可重集全排列公式,
$$P = \frac{N!}{\prod{n_i !}} $$其中$n_i$表示第i个元素的个数。麻烦的是,本题中全集规模N可能很大,这里的所有数都应当是高精度表示的,我们难道要一点一点做高精度除法吗?
作为一名强迫症患者,我无法容忍这样龟速的解法,我们需要想想怎样优化。首先,我们知道这个公式得出的一定是整数。不难想到我们可以对分子分母分别做质因数分解,再将上下得到的指数相减,最后统一乘入一个高精度整数即可。又考虑到这里分解的对象比较特殊(都是阶乘),我们可以找到一种更机智的分解方法:从小到大枚举素数,然后统计这个素数在2~n的每个整数中的指数之和即可。(详见代码中的"res"函数)


, c = getchar();
+ c - ;
, A[] = ;}
;
;i < len || mor;++i){
, A[maxn], Acnt = , Bcnt = , prime[maxn], pcnt = ;
};
;i <= N;++i){
;j < pcnt;++j){
;
)){putchar();}
){
|| !d)putchar();
;i <= N;++i){
){putchar();}
) ++Bcnt;
;
;
) || (S < N- && !Bcnt)){
);
- S;
;
};
;i < pcnt;++i){
){printf();}
, p;
] = ;
;i <= A[j];++i)
;i < pcnt;++i){
powcnt[i] += S / p;
p *= prime[i];
}
}
;i < Acnt;++i)
res(A[i]);
;i < pcnt;++i){
;j <= powcnt[i];++j)
ans *= prime[i];
}
i = ans.len - ;
printf( printf( }
init();
work();
;
}
Prufer数列+可重集排列+阶乘质因数分解
[BZOJ1005](HNOI 2008)明明的烦恼的更多相关文章
- [bzoj 1005][HNOI 2008]明明的烦恼(prufer数列+排列组合)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 分析: 首先prufer数列:http://baike.baidu.com/view/1 ...
- 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)
[BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...
- 「BZOJ1005」[HNOI2008] 明明的烦恼
「BZOJ1005」[HNOI2008] 明明的烦恼 先放几个prufer序列的结论: Prufer序列是一种对有标号无根树的编码,长度为节点数-2. 具体存在无根树转化为prufer序列和prufe ...
- 【bzoj1005】[HNOI2008]明明的烦恼
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4175 Solved: 1660[Submit][Stat ...
- 【bzoj1005】 HNOI2008—明明的烦恼
http://www.lydsy.com/JudgeOnline/problem.php?id=1005 (题目链接) 题意 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多 ...
- 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度
题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...
- 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度
[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...
- bzoj1005 [HNOI2008]明明的烦恼
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3032 Solved: 1209 Description ...
- bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)
1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...
随机推荐
- HDU 2082 找单词 (普通母函数)
题目链接 Problem Description 假设有x1个字母A, x2个字母B,..... x26个字母Z,同时假设字母A的价值为1,字母B的价值为2,..... 字母Z的价值为26.那么,对于 ...
- oracle数据库的date和timestamp类型
1.date类型存储数据的格式为年月日时分秒,可以精确到秒 timestamp类型存储数据的格式为年月日时分秒,可以精确到纳秒(9位) 2.date类型 Date类型的数据可以显示到年月日,也可以显示 ...
- oracle01--单表查询
1. 基本(基础)查询 1.1. 基本查询语法 基本查询是指最基本的select语句. [语法] [知识点]如何使用工具进行查询 在plsql developer中打开查询窗口(执行sql语句): 执 ...
- HMM的概述(五个基本元素、两个假设、三个解决的问题)
一.五个基本元素 HMM是个五元组 λ =( S, O , π ,A,B) S:状态值集合,O:观察值集合,π:初始化概率,A:状态转移概率矩阵,B:给定状态下,观察值概率矩阵 二.两个假设 HM ...
- C++之模板编程
当我们越来越多的使用C++的特性, 将越来越多的问题和事物抽象成对象时, 我们不难发现:很多对象都具有共性. 比如 数值可以增加.减少:字符串也可以增加减少. 它们的动作是相似的, 只是对象的类型不同 ...
- /boot/grub/grub.conf 内容诠释
linux的启动配置文件GRUB启动时会在 /boot/grub 中寻找一个名字为grub.conf的配置文件,如果找不到此配置文件则不进入菜单模式而直接进入命令行模式. grub.conf是一个纯文 ...
- HDU 1024 Max Sum Plus Plus(dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 题目大意:有多组输入,每组一行整数,开头两个数字m,n,接着有n个数字.要求在这n个数字上,m块 ...
- 父元素的mousedown事件上父元素的mousedown事件上的offsetX和offsetY错误的offsetX和offsetY错误
https://stackoverflow.com/questions/35360704/wrong-offsetx-and-offsety-on-mousedown-event-of-parent- ...
- csu 1547(01背包)
1547: Rectangle Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 996 Solved: 277[Submit][Status][Web ...
- Dockerfile 备份
dotnet core app FROM microsoft/dotnet:1.1.0-runtime WORKDIR /mvcApp COPY ./out . ENTRYPOINT ["d ...