题目大意:一个竹竿长度为p,它的score值就是比p长度小且与且与p互质的数字总数,比如9有1,2,4,5,7,8这六个数那它的score就是6。给你T组数据,每组n个学生,每个学生都有一个幸运数字,求出要求买n个竹子每个竹子的score都要大于或等于该学生的幸运数字,每个竹竿长度就是花费,求最小花费。

解题思路:其实这题就是考察欧拉函数性质的应用,我们先来了解一下欧拉函数。以下内容转自:http://blog.csdn.net/leolin_/article/details/6642096

欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。

通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。

对于质数p,φ(p) = p - 1。注意φ(1)=1.

欧拉定理:对于互质的正整数a和n,有aφ(n) ≡ 1 mod n。

欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。

若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。

特殊性质:当n为奇数时,φ(2n)=φ(n)

欧拉函数还有这样的性质:

设a为N的质因数,若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N / a) * a;若(N % a == 0 && (N / a) % a != 0) 则有:E(N) = E(N / a) * (a - 1)。

看完上面的内容,我们就知道一根长度为p的竹竿它的score其实就是欧拉函数值φ(p)。又因为一个素数p的φ(p)=p-1,所以我们只需要从x+1(x是幸运数字)开始找第一个出现的素数,那就是最小花费。

代码:

 #include<iostream>
using namespace std;
typedef long long ll;
const int N=1e7+; bool prime[N]; void is_prime(){
for(int i=;i<N;i++){
prime[i]=true;
}
for(int i=;i*i<N;i++){
if(prime[i]){
for(int j=i*i;j<=N;j+=i){
prime[j]=false;
}
}
}
} int main(){
is_prime();
int t,n;
cin>>t;
for(int i=;i<=t;i++){
cin>>n;
ll sum=;
for(int j=;j<=n;j++){
int x;
cin>>x;
for(int k=x+;;k++){
if(prime[k]){
sum+=k;
break;
}
}
}
cout<<"Case "<<i<<": "<<sum<<" Xukha"<<endl;
}
}

LightOJ 1370- Bi-shoe and Phi-shoe (欧拉函数)的更多相关文章

  1. FZU 1759 欧拉函数 降幂公式

    Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...

  2. poj3696 快速幂的优化+欧拉函数+gcd的优化+互质

    这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...

  3. HDU 4483 Lattice triangle(欧拉函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...

  4. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  5. 【欧拉函数】【HDU1286】 找新朋友

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  6. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  7. SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1

    5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...

  8. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  9. [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]

    题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...

  10. XMU 1615 刘备闯三国之三顾茅庐(三) 【欧拉函数+快速幂+欧拉定理】

    1615: 刘备闯三国之三顾茅庐(三) Time Limit: 1000 MS  Memory Limit: 128 MBSubmit: 45  Solved: 8[Submit][Status][W ...

随机推荐

  1. 获取AD域中SYSVOL和组策略首选项中的密码

    这种方法是最简单的,因为不需要特殊的“黑客”工具.所有的攻击必须做的是打开Windows资源管理器,并搜索域名为SYSVOL DFS共享的XML文件.在大多数情况下,以下XML文件将包含凭据:grou ...

  2. 《剑指offer》— JavaScript(8)跳台阶

    跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 实现代码 function jumpFloor(number) { if (number& ...

  3. 形态学及其他集合运算(Morphological and Other Set Operations)

    摘    要:本实验主要实现形态学图像处理.主要验证图像集合的交并补运算.膨胀和腐蚀处理并利用图像集合的运算,实现形态学边界抽取算法并进行特征边界抽取.同时将膨胀和腐蚀扩展至灰度图像,编写函数实现灰度 ...

  4. Codeforces 19.E Fairy

    E. Fairy time limit per test 1.5 seconds memory limit per test 256 megabytes input standard input ou ...

  5. 洛谷P1588 丢失的牛

    P1588 丢失的牛 158通过 654提交 题目提供者JOHNKRAM 标签USACO 难度普及/提高- 时空限制1s / 128MB 提交  讨论  题解 最新讨论更多讨论 答案下载下来是对的,但 ...

  6. Meeting HDU - 5521 虚点建图

    Problem Description Bessie and her friend Elsie decide to have a meeting. However, after Farmer John ...

  7. Linux环境编译动态库和静态库总结

    对Linux环境动态库和静态库的一些基础知识做一些总结, 首先总结静态库的编译步骤. 1 先基于.cpp或者.c文件生成对应的.o文件 2将几个.o文件 使用ar -cr命令 生成libname.a文 ...

  8. Ngingx--location匹配顺序

      location = /  精确匹配 /,后面不能带任何字符 location /     所有地址都是以 / 开头,所以这条规则将会匹配到所有请求.但优先级最低. location /docum ...

  9. 驱动学习5: zynq实现点亮led

    驱动代码: #include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #i ...

  10. 0UE3 材质概要

    材质概要 概述 参数 当创建材质时如何考虑颜色 材质表达式 Abs(求绝对值) 添加 AntialiasedTextureMask AppendVector(向量合并) BumpOffset(凸凹偏移 ...