湖南省第六届省赛题 Biggest Number (dfs+bfs,好题)
Biggest Number
- 描述
-
You have a maze with obstacles and non-zero digits in it:
You can start from any square, walk in the
maze, and finally stop at some square. Each step, you
may only walk into one of the four neighbouring squares (up, down,
left, right) and you cannot walk into
obstacles or walk into a square more
than once. When you finish, you can get a number by writing down the digits you
encounter in the same order as you meet them. For example, you can get numbers 9784, 4832145 etc. The biggest
number you can get is 791452384, shown in the picture above.Your task is to find the biggest number you can
get.
- 输入
- There will be at most 25 test cases. Each test begins with
two integers R and C (2<=R,C<=15, R*C<=30), the number of rows
and columns of the maze. The next R rows represent the maze. Each line
contains exactly C characters (without leading or trailing spaces), each
of them will be either '#' or one of the nine non-zero digits. There
will be at least one non-obstacle squares (i.e. squares with a non-zero
digit in it) in the maze. The input is terminated by a test case with
R=C=0, you should not process it. - 输出
- For each test case, print the biggest number you can find, on a single line.
- 样例输入
-
3 7
##9784#
##123##
##45###
0 0 - 样例输出
-
791452384
- 来源
- 湖南省第六届大学生计算机程序设计竞赛
- aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsgAAABmCAIAAABZQPCWAAAgAElEQVR4nO1d3Ysdx5Xf/6leLkyGYVi4DEJhbdoekGUUMGuQIXpwL2hwWKOsE7F2gtgGLax2RaIsZldrsY1jJ7bBEbGCo4DMjXEgSkiUh8EP87IMLPetccLuQ3/U+ayPvn3vjKTze7A193ZXnTp16pzfOdVd96/+V0JjMBgMBoPBEMT/SfgrIxYGg8FgMBhGwIiFwWAwGAyGyWDEwmAwGAwGw2QwYmEwGAwGg2EyGLEwGAwGg8EwGYxYGAwGg8FgmAxGLAwGg8FgMEwGIxYGg8FgMBgmgxELg8FgMBgMk8GIhcFgMBgMhslgxMJgMBgMBsNkMGLx1OLw/o//+xePTloKwxOJ//n1h+/87DfLkxbDYDCcBIxYPJ04rC/P5+WdRxt0/R995+ze3u6Wc865rd29vb29vd2t2fb83Ks3Pk6WY3n02e03L56bb8+2dvf2dnfPvFLdPTy8e3X/zBt31z6Ww/uf/OrL4/6v4y9/9cn9w4TbJhm4jhNViS7Vg2p/a796YNzCYHj6YMTiacTh2xdnu9/6YIiRy0fvv/mN587ubc9m22e/8e3bnx+H7paxPPrs9ptX/mMRvOjo7YvOOffN230Hx/ev7c+c2ynro2gPx5/fujSfua1nX7vdx/fjz39wcWc2m8EmJxF2efTZu//wwlZRwUvq0nOD+fbM7aYzs5UGrmNTKjm8W71yZnd3b293y209++qt+77l4/u3Xj139rmXLn7j7Px59M3DmxdmO9/6wKiFwfC0YVPEovXJA4qqwh90n3K3tqgK58p6pc5pexM251GX8gC6IQDw7nuhakEp5HJ4SdedeBe8j4z5qC53ZhdvDTHx6L3L8/1rvzhaNs3y0Z1y1zlXXMtINZePPr312vPzs6+89e5nR+HbPnp9h85zp53zNx4G7zy8e3V/5mZff/19Esvb+2XNjxH2i3/727357u7u9sw598y1B+CrunSz2cw519Kv2GAhxg9cx8ZUsqgKd/bye79vmpaTgsYX1/dnrvje/eOmaZYPrhWo2+W9q2eIChtpBdalICy+jK4hb+PwG9+K2KTWCltRGHJbvEUwqAQvI8qiNRESofteFb9vrf2yLttW6f9DTQe6JgPN8q516VTXnu+mU4x+0EIygG/F4iRZ8bq0jsRbSzRbGRskFoOi4L/5VCthMrr807AuXlGXzhVFoXIj5PKIMSRbB72VmCe11mGseNAPb5x3s4tvD0X8P9684EDq3Dm8S3cSoubx7z+88eqzu8++euPD36ZE2bbtOSrRtyE3El8f3rwwc2524YawbV+XtMkphG1FZcSChck0jB64js2ppLOIr33rA/BXUS2aZvnBt3bgcvzi+r5zX7v8/tDUL986g/5uFI+sc231LvpNSiDmjcKrlJuCPr5vYlEVRVVLXKFTFuERRVVTz+eFq8v2+0FWLQ55Xzl8zflK30vbSF26svbtLaoi6npC/glpVOJKSTdmdald341Om6wo95JlBNqD9yZa8Zq0TmQ8jdTixCoWdKVRG+SVitHsLIGq5JocxmCAmEKwr4U/0wsy0SuZZcvE4o83Lzj30i3/cMAff/jSzLnZhZsPh3YcDakMx5+/+9YrZ9IpRdM0wn5A0yzvvjF3DhEd4b663HHOnbl6T+qpLl2k4D5G2EmJRf7Aj+7dvBLaqtmoSg4/+KeDgyvdLse9q3Pn3OzSneOeGwEOWpduYCBNf7X/W6rdMT9QVAu2ZstK9Z+dcbcRXi1JtAsusWIRvcyL3xELQFHAYuPugFwntdi34NuRxVEKkoQsefk08en40wbfBXF4Z1eD9nKFHHaQrQUdNrutJRVVP27JT3obyfHyRP5B5GQrXofWM1V5Yji5igVPFwSVa1Ayi1iMXsccEEMWVpNOLAYuEK/RxWgVy4gWMrE4evsiy2aXR3/6w5/68NIWMNrAIWB59Nntb78433721Rsf/j7zUQy2H9AW87deeCv4EOPDG+edc+78P8tvGRx/+Yc/fDm5sAqxOPv3P/qv6srBwcGb//pR+pMo+QNfVEWoanQiKmmapjm8c2nHua0Xrj9YDnyJEgtIW4/evujc2e/dH0aFSncwfKIruoXq16vkGLybL2vYsr6Y8isWsZr1wGfaoURCAsxUmZSDcCiulnV309BTF4ayiIUfjSPOCvCcQZ8RVwT7Qz6mqBZ9Yh9Og4JpdqDqQKaI7H54ydsvWA95xIJeDdPHNCsGA5pW6+yb08csTrRiAaMfXMF6/A9ZZJRYaAx0Bfg+MV2QLVKSwn+kO6bOlYSkJdtLuDhMPUGo/N5KAZ/shF/+8OX5bH7pB5+MCElN8+DaM845N7/wdwcHBwcHF8/tbu08/3r0UYWW6eQ99rG6sAqxcLuv3PrVl8fLR7cv7bjdsk55KyRn4F9c33ezr1++85s7pXvm2sd3q5fns9nl98hVJ6GST39wcHDx+e3ZX5///o+72zuLZcQCau2j13f8FdQl881D5pJBqKAVTUAsKn+bv4eTgkxiEaAKYDkVVQXyA6FLXJ7sb1crFp0Y3jHCbfoh/5KzXLbD4ruvSwfqCm0PZQHVRrZVwwPHlyG90UDKEPDiisp5CajzvJqcHS11NN6vULFQiUXIiteidUHQU8csTu6tEFJEJMQigJE7Siyg8+lI3DOBxS+0v+ibW1QFeMCtKgLia9aObS5csKA5C+ET8Ou6dIFUeHF9f+a2XqjuK4Hn+PPb335xvvX1y7c+zX5RsiuFlPWyaZpm+ejjNwrndi7dicXm9y7PnIuV9qcWViQWv/v5O75M8dHrO44+PyAja+DLRx9XL89ns9nMudlsNptfusUJyMmopOkf7p3NL739m2UasVhUhf+A53oNMfShmokXXFGWQWIx5IwaFwhtKsB+aDqsFZ8RsVj0q1NuH3AjVEiU0Q+svWzoCjIKrEdcHJArFt59oMpwWQPaklAy5XutRVG0fGeI5O2A238qTeqdSfk/+DOJGeiuUrp98PkCg4UZIqiOpFrxmrQuj+u0PWexEWIhrbc+yVCIxYiKRRD9BKmuJY/ycRMVjBa6G6WYEXiiKJ1YeNeKrTmXWCwfVPuz3VduRUv8x5+/+9bL862vX8qppi/rcuZQmZxUMjUEn/l4eOO88pzBSsLKxEK4AD5PoGDEwI8/+e5Z59zXLlSfii+jnoxKWnTVkvnVeylbIYxYYCcgJaJijT9SsajpemFtSa3oFYshqmvAxAJGDq1i0eWui0jbOFMZclvcPt5YLgpgTjKxEIcPvo9EONH7LKoCPGI6DI/eJ7itSG9hYrFC8i56bbR74oi8wGDLum97vBWTbsdoXRvXU0ksPESuv/aKRW8JrIw3YQEpQKbRV5BaoCyEArtFnJaQC1tzX/SJHvaODTY8jVgsH1x/YXt+uT2Y4ejBT37yIHa+Qvv833ZqeGof+gPV+y7gRuegjWR//cZd/tXyo9d3tecMVhJWIhaL6/szN9u/juva8bdn8gbeVSy2trbcbGtr5kSit1GVLB/8+5WDgyv/3svfrc5nrj1QHt5ElZR4xQJ9QxO/Xk9SQoCJBecRsecjtJUnZ6Fyw6C+IG9OuIFNgFRKidKkWoIcBbrTC1CX3YOtVTXUQ5SKhai9nr/ArpJQVFVJqJR0q6a/GLGQm6GqC1ageBeZWyHC3b07TbPidWhdkv5pJhaL9gkkXHjqCG0gaLIUf1zXBX3eqWv6BIgFpwhJxCJNE/gakVgsqkJ4xuKwLuc9q2ia5r3Ls9TTldo3FrfnL7/1brDS8cX1fYdjTve65aU7y6ZZHv3py+Pm6N7NKwcH//QB2SNoX6zkr08e1uV8/5q2a7OKsI1ELD563T+22PR8odOkInnqwMHV//LCbOvZ125/fts/Y7F1+T3KEzapknbfxW/l3LnknHM7l98/Zq+bLqqi+2ZA8BkLMZnFVf0uJY5XLCJFBiW8MiRtefOKBXUywzjAkP0+hmuLDHLLZenQiAf3MTgsQjBQzUarWCAFItcXdSwhR0mIRRqziwRC9etOEzV88kb3uRMTCy9VhhWvSevjL90YNvxWCNwyZDua/hvsSWKFJd9FoJxxaogFEzSRWAjVRr5bEl/IyzuXaK67fFDtz772Ny+3jxYeHBx88/mdlFMQAIbw9ENFocILlyC+Prxxfufy+8ddCOOZ+OKHL+06t3Phn3/RPW5w/PsPq5fORN4mGS1s00jEYnnv6pnijbuHTdM07cObsyGGq5KnDVzpPlQN2ZxKlh+9vuvml/7zt8umaZa/uXFh5tysP6x7cX1/5p753v1l0x2QNcPHeOOXkKIumcQpH7Nrddn7rFUoxI+rWMQawBULsXdtcICXiLkuvhrUM6ET8UyC5Q3aVsiirhek/0FQ8ok03GmJRUTxoboEjgxrJhadfruhMDLZf6Fb8bq0nnplQjfrwmaIBSTpkUHCjSx8qVyKQnc+HsSiWyminSLxhMGgJIoYatLq5+dYtCk1wahjm2j63fb3o2+2B2A759xse7733Pc/ab85/ODb5+bbszPnXjx74a2PHy2b5aNPf/zOd86LAfXw/q3Xzu3tbrmt3bPPPHP+4ptZB1+mCts0TfPTK3te4PYA7ys/7YToTraeb2/vnnsNSCBJnjFwjqN7N6+8eSe8o7ExlSwffXzj1XO729vz+fbW9tlXKrh3cnz/1qvn5mdfvPjSc2f5r5/cuzoH1RpaumYGjpJyuH3YPSQoIJhprIVYkAIgDPcqupoK2QoJ5d50kwF8TTwXJRaka7QL67qSiK/g+J0mTRchPY7aConVLIITRxmWiikqFrjCDppJs2LQxKRa13uDAJWszRc0NvXwJthbCplC7adeuHQV9SyqbiMywxBz2x/XAvYpYHUm80zNckSy3J6BcPHtVX6iYo1YVEX2W5SnA4+v5OvDL986A7dG5FwPrXSyk9D4O5U1m0oswq5H9ANECmk5adwkOSz4Rsn1fCNTq44kVCx44sGDGvNg3hWFw3x+xYIKTRHes0JbbzkVi4mQY8Xr0ToWJq7HJ7ZiYThNOKrLHVSzOD1If/TwtOHxlXx9WN67eib/sA3D04FFVZxIyHuSAHdoTheMWDyNGPu7k598/7m9IJ75x5+tItcn3z2T9+jhSQqLO5tS8rVhoyppHt68MDvzxt3TrhSDwTA1jFg8nTisL89344dTGQzjsHxQ7W/rJ60ZDIYnGEYsnloc3v/xOz//3UlLYXgi8T+//vCdjB9TMRgMTxKMWBgMBoPBYJgMRiwMBoPBYDBMBiMWBoPBYDCcPsRfkj51Z2622CyxQMeiSipJfdkcHKPbNI1wkoPwHjP9KPAGsPCVfCYE+X7qN3/Uc1/7t6fBuXxUJTIip+kSPSYerRJ7lxrMkj8ZaMUVMaaFgJzCIaaR1SscuR6afv2ckyybx/elKyD9mJXkExhSWgocuKDflNR/zqk/Ux1qMG51RNGqRTaDtoPEn5IYpKGzDRWgToKqJc1A8YLpzxiXzDVBU9IQ0WkRYzS/jqOhAsexrn+OYqsz+fXTlKW4EjZKLDCvyB8XuYseVKJNk/JRcPb4SqeXJhjSikZdlw79Uo0wmkV33LEP3dE+gyFGOjNOGhHWHdEkbUQ5YnQVKhZXPjs0ORhfFou6KvwkM5oh3Yfkj7qw9MieemUOA8h5330qn5NC9rX+o9dlhYy1EIvA6shDp+8Ej0VkUfqDp5ficz3xib+CHMEBCPMydAWIhf+/ukjLmmoP/D48a1v6I1HzmyQW8qUrzVHymW4gXQuDJ+IZx6VmYZPEAp3XGxq2hhCx4LGOtkatTF1I3BwjxQ2Wuk4wNcMylvysRu/p53wFq/ZGaVR3SCk65Q7T7SRiAZfhVLlw+Ox2BCi0oglJ8ACxSEtMuHSTEItUTxP8xW8IdQGsOFGk+6JaCJrruF+ynAnXot92SLkuEXmrI1dVWrExeLCkTnb5WBdI3HBU0bQ0GAUuQYrEAhgQvlo/mlNzaVmaz7GQDGiZUhgTzRETRa+5Oj2Eovb0cDbejCk2Ryy8zKLS8L6GbA1BYsGKSQnEQlKvRDPZpWPL14kgbEWhKq0Qsr1ANxBZB4QH+OIr+N1ZqpRUYpGmpxwt9WYU8CHsMOh+BOqh/uHShp73ZKTCU1csMrqO5W1Rd5xvxVChraRUCG6XUUuNjCPoLqetWERWRwZQETeVWGS5/7pENU1dTyEtKTmcQizqsp3wmEHB+mpixSKsecHIIkaXBE4s4OBkpU02R5HV6VP1WDbBkj3utifczN8UsfBBsHP0TdOQGoaS2YKvIsQCQjAhGlpEd0CDNZOBtBjIKMbOkZ9gYJxSZPf8vVtkRVF4TfGrQ8aGLyNRlmskRhgEtcB5Xx145WHfInXjPxbu7DZCfE2SyD8s2GFWMseu3aWHjaJwwVWebGCrbWyMdTaUWBRFIFlNFfSEiUX66shrEphd6kJiYghS9qDPPqi3BrQkRqy2HMqJRTW0I0wYqWD6QWoVCzSmmObXRyz42OUekHCTzFHIvZHeAwsEVan6OSPVovZ30lbewW+xGWKxqApXlqKZCaOYgFjI9F+wVubtRDkDxQ0dQ8UgDWXNZMIhznsh/3k3zr4MVnfBO+6koUvzw+me6Gg5AFjO3T8Du7MBcw/ralzQg0axWOgm0g2LOBeRsHd/xtJ7JEPGEsyrWPjaqE5TUjQXJEHxShZNB5MtmVcsiL74ADRRUeHOp638mqHJ5DJZ1tocvTqCCi6KXimJFQufsrf/Dd8TiKQrFxMXi0UtViwGsWT9gky8KzpE1kW65icnFkNfWmlF9XWTzFHfWOIEpVQs/DXlsE9OupdiQzY2QixagwBzQIyKF7RWJBaS36V9deQak+CyvSJSa5dz5ZgAMXATFIwSll3UhCDSuxzj+hLfQF0CBicUREgtiAtWVFXJQ0m2N07zh154OlhxZAk9gMpRArh684gFLFsK4galQLxUlKWJ6X61PJwLSNe9tHalxcSyNRzG8EgCQ0pni4EBJa+ORCyqsnv6OplYDKbhx0rpn5gN01q+rKe4ltSFjrdCQL6jVSy8CuuyzYi0dZSj+Y1thQRanHqOMioWqPsQFosJahJhbPDhTZRwDBofMm8UMLOJRSQdghcsqqLdQ2hDMLM0ZbZGVixWgWYkUugDZgjqzulhuIKkSrsVfJdFLDo1I22nR1pZMX1LuHPqi+nC792YMDl9Q8Jk6x6eQnVdI4mF9EFKgahfURr51qOwTGUyIVUs0DdMLjHcrUQswFUrE4tFzurIaziZWEAfyYx+mDJR273gNMI1aVqS/VxRKRWL4f96xaLNM/SKhZcqS/MJtH9aYkFtbg1zlFGxCLt7QUla1W7VckVzAsSC5mMoNwMET7IGmVhQT9jfjkyILFvEaFjpPJVY4JummA6MQDCCQiLpEEXTGlW/xwuYBdNxxAJeDZfP+OCF4tZiARpjvljOYIT4H8p8GW1tn4GQMTmx4IMPpmV0MMnEghaWV4BOLOQP5TFrDIo5CGneoAjshnFLNXF15ADnO7qLJ/5Fdlt9tZLpRnSJ/V0ZWkqtWHhiMXhZX/Ej+WOfCsnwt6VofnMVi0FXha86rWuOSAvKBf3qLZlnRbU0tbC2elUP4SQqFsGPmkjWh10Hm4q6BPMUoJmB8kYisQBG4qsFOpcdAz3E1DXMB/BgRJcQHotvd3piIeam8fAVCq8JdZiiWkjmgiyCkf0hn1CJxSCVtgzXUbGgHZAegh4hjVjUEz611TcYJhbURESDCBCL2NW4yYmc5jhiEZzPpIoFt0h9EQezYaHPLC2p3QJCAWKlIpS/By9WLje8dgylS5736JpTQon/ZE1zlODq+iorW89FVQVfQQ0McnWcRmKhgntDxiloEYlFAcGJ8VlJIBb9VQGDGpnE4JZCLsk554qyLBzgwX5968w2aQmFSo5xcweeC9Wk+pUgFGVVSXKgsB9RIZBpgGkMp47g3sBCFwWbwMlJhZ4YsYgJWvs3+CZzLUQ9odRXTaGYIiImgSl+71b79TA9sYiZSJLY4wsd44MWZAF5WkKjJlODKhZNuITfe2Usm5ajNWM1nz7v4QvHfTvJHAmdRdNVriEmXz85uMcngFjASlLKjQkWJHn0RVXgF4Qlx9xdOLTdyRlwye3DRpD1p9l5LrQQAyhED64AOlQvZ9oiWaHYS0hX3zNTfKC+kudw4RywXkiFkt1YVAukrFDFgg2Rwi/8kGMN2opOLDox4rQOFc7CXm9Bn3tJljMEuWIBVeIrQIIhy50qOgdClzW9LjAL+at01OoIW3L7bXhG47UcoTscOogaaCALaymwuvxXg+oV95ruOiJTv46KRUy+8PwEKlWrzVGiC8FbKZpL6a4sYb04Oz1KxwaJhcGQipWLPQbDqYBZ8umHzdH0MGJhMBgMBoNhMhixMBgMBoPBMBmMWBgMBoPBYJgMRiwMBoPBYDBMBiMWBoPBYDAYJsOGiEXo9dvJXqBV3yvsewenjqD/q9DfGOrbzXjPPhXaORpVWJj+Xv7SETreKfBqEZ4k9iqS0CDvW3sfMPr2UqaFsI8inUinJdTiT/BEmlqLLZHfSUsxPHisUdKLYlMts5Q36VPO9ZEPtwjOUfT1u3HvyE06opTrhtEDo5EMWtJQ/3K0os7IEqfDBS3Bt62VxpU7mJpWszP5zXmpT+UNSzgCSRR9vqn0wlu6/kphyYbeaqev/rNT7sa5ldOKjVUsdL82XTx23a/g8S+H18XRsRbMn4s36tLRE9n05ZgOvK7p0TF+TUSPcfI/NIOIBT1dEvyr/fFwlWbA0UgrZTiyQjlKTA4MwYPJ1G+S3LBwxIFwlAJDjAetw5aIr4uJoLrGwI0TLTOqaDqng1UNV4nD9heMmqMpMfmIwn2p4YkvMc3o4+tBkBDe7Zc+4DWKrukRL/gQsgW/eLVJ68yBnK0i9el/9ht5HTpRzG/h5oPSh86+wn63PaYQfaT8DkfrJcWzJsa5ldOJDW6F1IEfplnViwxrRFrzUpcS8U89koSfaFNW7d8oqR8zHHQbYhFiESMvzyrKMkQshk6J/8Efg5bBuS6kcAM+CB4Tw4/BSbAQ8j06agbOpdi57CrSD7Nagy0BdYbS3dA4kU7TD+gaaaA0a0TckIZhaUjIt6bO0bow/YjSO8P34C9JezC+ByoWRGqgSrawYYuNpnW0SPGKFdevntslYVEV6EcU432GPibfdCMk4w5JL+qkozFwtvomGeGvh5/c84eS8V9y7c/e5hMqk9zHAafgGYuV/QhJkxXDaf0BtlFgGMGT4xRp4VrtTG04BG3MkDrJ/f96wiJ4kDRi0Y80oWLBk2biqpQlJq2Usu7rmaDEx/ZZklcJ7hwK2kpJhUM5WV7QSis9rsGWQG4SlyG1YgHzHWK42S5KiKfMl7IwXJeuKAqcfpIS78kRi3WNSIr8oM4YKKiTbJv9u7s9XLFQ2AolFjQYi8E5RD6ElKRzgmNnr7sXdxrsMyS79o0cHyTppWahBJ2myUdUJwxlXVee62BziLuVxwQbIRb9Ch7CG80QVvAjPkQBM6CRvRVgCNOt+/D+gaxvNW9kOTtyGuDDUeNhNTzfsMBUQsktkTeJWHQbIcDb82ykHW2vRWHJCbWi3pmRbKs7Whb2l2ohlFigBAdfgZXUpQCBydGzfLzaJ7clUWk6waCxD4Gao18T3gqKql6MWXKID/SBVgvDQ0W37RrZtFYAUOcosaiUndStYURSvEgjFmTAWjkqWLHQ6u+xioUQReWo7CtinFaMLtXC3mjkV/ukfcvfCE6JXS1LH6AxOVbYzwime4Qg5rmV04/NVSyAarB9kFQq3X2Q6MuNYkglsKeuu620uotf8eTfN+ZRl13drDUSQDO6f44imL2wJHqWNQ22eRWLVjKp/oEkVTMiqU2pVAdQwH2DctgZEJwlI0DhfRhesSDrTuJPIYG911LiPY6CU9sSI1VSqEJXYuHDuczQSK/EVXZthRkK5/fDx8TQ5IpFfI4wJihtrGNEkxAL9tXYMmjb2sKX9WBJbWhRSoiECMxZoP/YL7kxYgJhBMYj9Am+UPoj8UEdlio9MkR9UKE17wsh9AdQYdF2Ardy2nAixELZUMhtTqggBKpeQjftEotMmrxS6rJ16QN1CYbMPGAXopTW00xNDVqRdmRSjhd1QsWiaRrwEGmCsCkWQuIOzNRoDBCDFv+u74Lv6ShuZVpbgi3q2RC6L7Cv0X6VyNDz7FNifnoY9s+zocpb+0k1Yo4a+lFCbeckRjQFsSAX1qC+l1JW4y3wikWDrM17M9gnqwQ6fC/J3JqxxAL1xf4Q+mTKEoKBYz5ZGlea9EMXKeWKTqMl9Ei9cdWwJjEQiMEER7mV04gTIhYwcZog7+g7EBuS87yha1BJTzaasqpKXLOVbh0zKrxGSJZCUoywmxFyqbR0ui8GcY8uEwtcNVAyO1LBELWUaCFSxQJ9g4kF7kkMWmLdQxz6Omypj2asa0kcFnslYsHnWKjGjkDbCnZ08fy+0wRz/Hlz5HsQyadeDd/8iMYRCzTb+LoFK5yzUXCmQxeZRCwgBCIi8Ar4SedwFQ+UYWraWilrrU9JBVQH4SJCg65NkD6FMTHVJvB7ja3IbuWxwYkRC49wKTerg8DKQ14B1f6DvQdjMSYWup/JGAB2J4E6nq9sKwWHdGLhPx7+lU4sUBQgH6lFG9lHJlqITizYh2yCgFNRsuHA8ueyT2dLNdi0D4lQ+yfb+w9ZFGPVld5FdzWZ1VYbTrKSNg7AfSD3HDFHxG4oyxg5sqlHJMWTILGggbC/XeJUwVAFJUypWADEeUVakB9XsVD7ySAWkKiGJAgZSkD64au0YqDciu4CxruV04nNEQsWTPwETaO2QJ25hi//4bxAN4LhkomJRXDpAb7gHa9Qow27iTxigYgArd0pAxoCIQqHwMkG51QmFokWEiUWwnhAg7CsGhyi/PmabCmxYrdDQtcAAAsMSURBVNF7TeqGRJfWfgFcNLCowKKLhAbIaZpYGCYXC2NLn6NI+YKab2Qy1jci2gS5iHBkybzbD0i5EnkbvL2Y4AOkq/0T1TzYitEXxzgqn78m5N0SnD26SusTuRggSpzYpBMLoGYhvMvUS/av0KDFxZrhVvKM+6SwGWLRTksVnfOVEDSpvnrZbpOWNfS6w1KW79NFxsTCUSSUTwQpfQmMB/n+VnKdiGRiIZUp5NQZ5gTMIaroJWS0hAqRaCFkxGLOJJZdsCfIIBZCAJvSltqxl5JOBC2R92lkCGkb1XmtPasasE84um65UftT8ntwWT831JKH6+Q5Epw2k9RXAIpqoZj7ukcUBBaJhiZSOiGxGyTldW95qmrIEiYEBdYDRGNSfSlsVb0gwb2FIFUphD7lj+OOOINYwLakW+hgk4hFqG8XdysZxn2S2AixAGsuuZI3qhexBZy4eSmCDN3bVDh5y69YpJYycP4F9IdOZotkK/0wmCdBGCw2KZ1HPCU4mxVMjQMzX9Y5FiJXLOBtRE42WdEh+luIEazDlnzuFVYoOZEvoiWGAF8IKkEd1vCpnN8H5PNS5s8RblyncLoi1jsitaPINQojxQuD3CykuFBMbt1hra0daiHn8QZcixohCttNiYni0KjoVqxiYRCQlNgYDCeEaewz2spjtwyevBFtHE8orzBIMGJhMBgMBoNhMhixMBgMBoPBMBmMWBgMBoPBYJgMRiwMBoPBYDBMhs0RC/z+ZM4z1SHQV0HgI1T0mXL/MprWufYcL371HD0zzt4FER9QCj7EHzxRIPy4kzBE/rY1fb8P/Z+3pz67HHqePXXykh7g4m94RCG8Xzmu9+G9D6wK+bwEfFeo6fjr9arEBfm9R3GOWef6/Ka8gZl+AETsyoSjC7xuFPMD92e/ZYfeG0q7U7UlPhZFHPk9ge5i5Z5u7OyboAK7L1Pf+Elq02BYHRutWATsedQz1TU4CcmfsdC/5cvf1in6A3D4a1vsLTftklo6pSo6CnXlBx2l+qXIU1qfxbtpP1xUBXlfUXs1V+xRGVnCKRrshqhHW1QlensuiYkkWY/eu/xmqX8NVCIWIbaIXvbVEJV5mDr9hB0HfsECmcKiEl5glOY36a04/zZ9DOK5IrGR6tewkx+E14uRkKIKuztSgqlqS6xH4cdlimrBXAQ6JwMSC9ygrqKYjwBHdyTjtB+DYHjMsSFiMf3LWpI79Hmm9yUDHQif5SAecwJWKyMW0jFNrGXsXzSMqVjUw89i9DFO+g2t/igJPlb5FKCMioVA3YaPxdgyqHSIuUmOLTHjzS4TkaEzx0xO9ZDOj/AHdIBgF64f4Q4Ssv02HYWzM1jfUP4D2T7prY4cFI4uZ8GdqR6f9COc3KQNKjTWiB4oq5L1KRQug3Ou9hjk8vwHKmk1Sb0RtA2JRWJsD+rIT3IWU8ilIgZDBjZNLISMSzrNyEM5OEZCXeKzo8BK7qv/ct0QfoIFgU6AEQtyTBNtN1jbYB002YFQ+qauvIcnBWR6PB3olVVrRTnx7XiDxXeiRPiCy5U0swnpbsbJT3pQ4fokVBN8pKSc/N7ViMUQMNRjkfSetaDFJUo+xSe4jSnojHWifJlOLBRSKtmRv0SoWASSGE0YTC2HZuSKFmtyZWIRybvq/icwc4sWxiwMa8JJEAvsFEYTC+bjJGcvxMxgxULbZIgSC/4LdEO+mQZlqzaWDBF/3no7wpSca0/L7rupy6KQneKIZyyGW0JRBTIsSngC3i1lJySRV9Td79yXtbgJlJO/cbap/HOVrRC+C4JGErinaZp+IyRQOloRSsVCvdgVhV4KSCIWYAUSJi4ccj6SWARlGTWb0IJxA2WdupsT15JPmXIm12oWhrXh1BOLhDb7lmIxePQqWiz4jw7zioWQ1uPNVfbvWLdVobsaWJpl+9DIlyEF193PEdRdurVKpOkdI6BrvCk+4WK5Xms+5TGE+AD6PrrehS7JR4LPJzNbVUX78x5ks6moqsCvfqeMu/9WixRJFQulh1G7Rn0jicUN1n4dfMIwkVh4CT1bF8oU3tqDMsbLh1HguZFHgU2YNl+X+BdiQj4wJprOQ4P3TMMyDQaKx5tYcI+GFnif8cNKtu5CUf+CE4g/YwG6RCOikvYpVsAZ9yKUWmhB1dWmaeoa1iQGAqFufQ/lU1BoTgHYsxcTMTwkad+e8TERqUww6h1hzuh7p8UgNPqOgSEqQSpA9Bq1YjGKWGi7IGQQwlD5DeF59erISeKFXb9gSBTXfsK99Cbyq546xlUswraUSVbwCiQN+NzEz2ZwOcRJQNBmRrZpMIzE400seMUC5KYge9HzpQY7atkLF1VaxQK1R4gFqViA2+VA0ftjZfUn0ID+7kAs4fs3VIRIliR5VJw4cnfbEaEIcYhtAyUJSbdakKrRJhs3DxSbkPOv+7/r4V1Q0VRW2QoZKhaZTIEGMqQaXVfJxCI8pNgek7Kzk0YswLip1ln/ayAWUr0haHdSuQjWzbwn6D+Nb3aosIqF4VTh1D+8GWwTtwQrplI9VnNHKU45g1jwD1nFwrsVxZ/ATD9p/afFDJz+VYWqJ1FsoCG08YFJUrzQENziyYbqkIfxqWwR0Buplbp04i+5D1ocbMqHLkYsRm6FgK0rdVrRFyFmRK8Q96Oi62JgaZLkPrDB77iJcb6YSCxo04H702tv8bayWvXq1R6ZIsSi6DZQ8ZaI0nuEhms7Z6PbNBjG44QrFvwCCm2VRioW7BIYMBfUD0UfDeBXR4kFidCkYjEMTUtJYecyBUAyMBIwjLuGD5Di5JF3j3pKz2iGDmKOShsygzZkuc1Ud6pfSngnDBHsFk4skNqnIRagtq1PsgZxJYQeCej+Fupodf8iMyr1ICbVtS8SM5Fwo09ztkJ0NQUuyEGaLdWl45uUqBanbm1614HrYBFjDw8yfxck3qbBsAo2TSw0qFa+ErHAjrL3gXVZwDZVYsGCNLyaJDBSCideOFzvT50AvevJvFQLIMRCc039UwFlP27QC1RvmxQOV6URC7VEJF6Vtf+byhfSPaQSN4bJxqEXKkusZskd+05W2AoBLUlrh0ZnlSpggYlQbJ8EsweJSoC/8BIpsJBqgaFrILQJRUeKu6aa0+/v7R6X2Ub6IdgEzCyAFhAbxUBEou6erRhqZq59/lo3+KBUY3ZB4iM1GFbBCRMLvizz28TOhixrSB/UiinywKLXhV8B78BGB3sP7OOWJRFtYBpBLfQxjp+EpQCwBDxsXp7GJX+97ktDSmTjN+GqCZDqJGMVi/bfUlCEc+SArVHCgWZ+tYpFA/dDqImGtrDIn4TewJYKcHqWsJEC4J824Q0N+ukvTGCFXseyHphjQMWjwLZE6Q9jpyNaLGDLAdYjl1mI2jP3HcD1dfs2SPsGOJk0SW9hzjDsgmQ5UHu+wrBWbIhYGAxrhVx2f/zh9yiexNGdTpwuW9J2VoZvC34232ptGgwrw4iFwWAwGAyGyWDEwmAwGAwGw2QwYmEwGAwGg2EyGLEwGAwGg8EwGYxYGAwGg8FgmAxGLAwGg8FgMEwGIxYGg8FgMBgmgxELg8FgMBgMk8GIhcFgMBgMhslgxMJgMBgMBsNkMGJhMBgMBoNhMhixMBgMBoPBMBmMWBgMBoPBYJgMRiwMBoPBYDBMg6+++sqIhcFgMBgMhmnwl7/8xYiFwWAwGAyGCfDnP/9ZZBVGLAwGg8FgMGTgq6++0moVHbEIfGcwGAwGg8GQBSMWBoPBYDAYJoMRC4PBYDAYDJPh/wFhf2kfn78tpgAAAABJRU5ErkJggg==" alt="" />
- 题解:非常巧妙地剪枝想法,每次DFS一个位置的时候,处理它能够到达的所有的点,我们假设这些点都是沿着它可以到达的,如果当前点的数量+当前的搜索长度<已经得到的最优解的长度,那么这段必定是可以减掉的,因为无论怎么走都达不到最优解的长度了.还有一种就是能够达到点的数量+当前的搜索长度 = 已经得到的最优解的长度,那么我们只要在当前搜索的解后面添一个最大的数字 '9',如果这样的结果字典序还比已经得到的最优解的字典序小,那么也没有搜索下去的必要了,直接剪枝,这里的BFS按照我的理解就相当于一个估价函数,让结果一直往正确的方向走.很厉害的题目。
- 还有一个小插曲:就是关于手动队列和STL自带队列,自带队列在某些时候要慎用,比如说这个题,BFS调用的次数比较多,给大家看一下两者的时间。
-
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAeYAAACJCAMAAADOmGvGAAAAAXNSR0IArs4c6QAAALRQTFRF////+Pj45+fn///v6enp4+Pj4eHhAAAA7e3tq6urmZmZ9fX17+/v8/Pzz6uZvd/////f3///7////9+919fY29vcz+//mazP/+/Po6OjvZmZq8/vvb/BmJq9mb3f78+r372Zq5mrmZmrvZmrzc7RVJmLvZm9q5m98vPxaWxuz6us0MXBq5mZlLC1rKvPta2Z7Ovrx97hkpKSBOZHcJuvLyoyN6xZBO1KqMK/o1VWp5Zwr9W1Po5JDAAAB7FJREFUeNrtmotC2kgUhqegBREFRNEWBWrRhVpadNvdtvv+77XnzCWZG5NAIwr9fy9DJnM5M1/OmUmCeMM6Pj45mbXb7WazuaxIrSn9klpPc/q9qET/kpYX6meu0yVUQkJTnrUl4QNSrRK1prXWA6lKzH+TLmrqZ65TqIyEokyOvGS+h5XpaXr4dE16eprT73klYsyH5+pnrtNDqIQkZvLlo6o1b9EvaS71roR+fSd9ow8/v3+PV/iH9O5I/cx1+jL6+WHzur9+bt9eoZx5eSSgfZZ05uYBMO8/5vayBsx7jplXZmD+EzA3Dw6BGZihnRfvs5s1YN57zDPC/BaY9x/z0sE8vbY1xRTtBeYTH/PRNBNhPlpijvYS8/UbW9eHZVvqX57pT/XTjky79z23iDlRQmsULdvU1YfBlnrcCcwXNzc3i8V58+3b5uWlxlw/bbVaxLH7UU1V932rNaoA84QbGXPNcVZ9rUlXBvVvB2zTyEsX8mSAuauzaUg3vYIek+2PdhrzN9b50sWs52A8lEhbdNgf/j5mrlQ/5UmbDDfzLWXQhNrhC8VL5cmwqTxbDiTZY7L9Hcd8d3cnMf/44WO++nLG13GnoqDNHta9/9oR9U+DzTBLg9gi6axeKk9Ges2zr/7qpXtMtr/TmO/uDOb//nMw08iUDxiiHLs57nEqYzqlQyr8SGlHYrZLDLny1eeRGGfRknP6o/FITrcuy9UvZ3ZR0yDlyER1YzqTdPq3X4dhKk+a2tRF9+NDVkdV5P+u1WyJtub24fIs2b6Zg6EYk+G0AqmDXcP8+GivzUO+gPujHHP3PQ2pf9OT3k1xjBcympb6KY2Zs+97eQkdJ3lVyz2IYuJITDrkMf1R1pqs7hQ1DdYfzvLGdGfSIB1Ww5RPmtqMmZZTM4gMs2e1xsxjqp9SI8n2czMmw342AbuGOdtp57azixrMMmUgnNK/Pn+RQDmtnL/7nlOCPlwrz74d5DFx9mlAEZuWZlNWV7eK5t4nnVs1pjvTS0N/ob3MTfmkqS29eSCXhyybjzyrNWYzpnT7lhlsqTnYMcwn7QAz75XMfluBoYkymBX+ALMuQXkLtaCpXZe6ag5o8Zs80tybsrq6VTQj8HmYEchXDt68kUVqzfRSPhnBnGVHrPYxp9u3ItvtwNqfvH7M5wvWlDAvZ01/bVZ7kjFT6g9VmKVYpQOcDN4PFHUpzo2toK3OdB8lKVr9OtZlM7nmEosvZ8KUzaGaoqZBnsWxWiO6j7ozaZAqcBmk1kkVtA1mmd1Rd0qe1TxI3YkM2qn2qawxYzIcZxOwG49HZu32yWx2/Ia/1BtiltPE0WmUb8HokLcreotEAVdm21swOsOrLu93bnoT66a7r/ZUo3xDl4XorKhpkHcIP9jZuDGzH2ODJtwFzb2f6uigatuYZbbaNgrPal4YdCdyTKn25W5e1p4o9samHXjY6TzTPqqFd5JbfypQsKtJGrTiZLlBqCA83p3HIOUxHztf460dhw+G7nuvC3PSoBUnCwdR/9RTy8hLDHgLmLckeatdMsC9yD0Kx9+h2BO9GGYImCFghoAZAmZgxkwAMwTMEDBDrwtzA9pjATMwQ8AMATMEzBAwQ8AMATMEzMAMzMAMATMEzBAwQ8AMATMEzBAwAzMw/ymY1TfDXsYGp9+IHfLYzzfH1RtdtsX1eg7GlR2K7PwWvJk7qbQjsdG8RtDlWVZ+NLMaewsaFBthDkzNPqsPlU//ljCLzTH7bhvLt46rsbpyHw5H4dtvO/GWMQv55/SfTq1B2fXMIpD/CZOG7biYgww733iFXS45PXZsNwZ4+ZldkXFH14rIOMOgG2AWMcwrvbnSIG5jFvkUioaLaPWfN44830JQpl27mcYKzPml6JZLzYfbf2Ic3rynxumVE3bbCTuEu+h4F2l4uVfo3a43W27pD1H4W55wn5S52ArMXruutzsXcRSzFS68cunptdzTizL+ZfB7mNPu548rb9dbpDfb4G2A2TEjQjUO2p/yiDevatfDHJ1X4VwvTrmCmO0GUd/4Kr254AaisRbmSkGXwlw2aKeCZFG7pXfawcKQno11grZ9paYXpzJBO7KRdC5TH3M46GcI2sHOav0tmAg+eMHcD+LC2buVu292tlJl7qcKtmANbzGworqHw8OnywXtFt43R7Z4Irgqnm0LBuFhJwTMEDBDwAwBMwTM0Ob3zdW+oHq+1y0C3Db25q2/iFy3LwHMO4h53b4At0rMhe+brajsvI+NPZx2Hy42ghdxYnW7fvvR97yNyMNTqACzWOe9sEsyjrnofPrqWO998PN++2K/vNnsnSLvjWPvlwsw+l5YGnMMdzFmuPN6mH2qUdBRDCu8OcWzOsyAuSHmovfCbr6Ifccteb5Mu2XfBzv9gGvqvtmBUWIL5nts9FsgVr2V722TWzAPn/We1/7yUfCeG3qmp2BV30JBrw9zmS9PYLr3wZshYIaAGQJmCJghYIaAGZghYIaAGQJmCJghYIaAGQJmCJiBGQJmCJghYIaAGQJmCJghYIaAGZghYIaAGQJmCJghYIaAGQJmYAZmYIaAGQJmCJghYIaAGQJmCJiBGZiBGQJmCJghYIaAGQJmCJghYAZmYAZmCJihXdD/aIdljl+rzK0AAAAASUVORK5CYII=" alt="" />(手动队列)aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAcoAAAChCAIAAADIumimAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAWj0lEQVR4nO3db3AbZX4H8N/KspM0afCKlD9NDiytyUFKe9iJIJg/057GQ51j5m4YOy+YTNscjsLADCnD9WbuFdOZG0qnQAIv6KDjytxM+yZyIXcJ9oARHUqTYhRbXAnkYluW0wa4XILWyRknkbTavlhpvdp/2lX2sf7k+3nh0T5ePfvbZ3d/evbR7or74IMPyECWZeML5bX2hXZSNz80rIGBASIaGxurWvjFF19s27ZNnTx+/HihUDh+/Pj27dtDodCKBAvQxPw+n89YqqZOjuPUSY7jdNlTNwM0hbGxsYGBgYGBATWZmuZWIpJluVgs6iaLxaLuMxUATPmV/KilJk11kgy5VdeBJUM3FhrZ6Ojojh07BgYGlBdKiXHzKclUN6nLuVqzs7PsYm4W3d3dygu0Bl3zrWHSezV2XU1Tp+lYAVXmXGhYR44cefjhh5XceuTIEdOMKUlSoVDQTirpVZIk4/adnp7u7e3t6upiGXWjm5+fn5qa2rx58/T09ObNm+sdTv2dOnXqWm4Nu/RKmq6r7iSRNGnXOBpLSK9Nxao3akyvSoZVXmjnnJ6e7unp2bhxYz6fZxtrY9u4cWOhUEilUps3b5Ykae3atfWOqM4EQTh58uQ12xrcxMSErkjbV1WzpzrippwhfvrppyseKnjp9ddfJ6Lh4WH1hXGebDa7adMmdfLMmTPFYvHMmTO33HLLjTfeqJ3z7NmzmzZt4nmecdRNQBTFM2fOKO3T0dFR73DqLJfLnT179pptDS6ZTGqnjcOpWkpulSTpxIkT+/btq0/IAADNwOSrLSva833n7wIAuDbpx151vddisagOvHIcp2ZVpFcAAHtV0itpLiHgygjpFQCgGrvBAW1iJaRUAAA37HqvpLmKQBkl8Pl8ygukWgAAe5bpVZZlJZkSkZJYqdyfRXoFAKjKb3phFlVelaXeCqkoFApff/11PaIFAGgaftPbCqiyG0vlqwjUJGv6IBit//n0M1EUnUTQ2dn5p3duqVohAEBz8d9///3aaZusqtxsrvRez507Z1/vbDpzazBEZLw1tjSu8MVvvyZZJqIvz85s2njz9ddf79UqAQA0An8wGNROaxOr9k4t5YVyE7rCvl4+wN95R7fNgwe2fLubiDiOPjz60ZUrVzxYldpkErHJwNBgj8XtnGJqJJ7dGo0EdeWZRGwuZCy2Y1XViql7AKxZrKCYGomnBettzGShAKZfbenSq1qu/PX5fE6+2vL7uPnTvzv04QznkzmfzLXJvjZ54DvdN924fnHxGyJau27tv/9XhoiCf2hagZgaiSez5alAuHx0WKXDTCI2nlZeCv0ts7NnErFxWl4dXaJgmzc8Y9hkmURsXAwvl2QSsfG00B8NzbkpF4S0aPPBWGNsuh1vJXYmRu3TOkdB8/I5pKRU7aR9vbIsc1zb/IXF+d8v/u+li/935cKZ/EI+L5Fc8XCmtg7zZzUphP5oyfK+F+wNU3q+clQ3k4jFxkmdOTQ3knI07Nv4giGBxIXyyojz6Sxll9d+IZsNCF2NnVvJZJMFI/1CNpkobSQxNZkOhIciQZflEZM9wRTfMxi1ysJmu5N2x+un8VgskXG9zm4wah/k1vrzzRjMzs6qLxTpdDqdTs/NzaXTaYfp9UouT0R/tGEV15G/kL947vLXv730OyIi4mQimWQiWs1f/oMN37iNmO8SKnfGTEL3UR2MNHp/zrnOQGA5ny5ks4IgZLMLyqS4IDZDdjXZZKWEMJUhElOJJIUjpQ3mqtxYrSexVQhGokNhcZxtgmXUPlB3/kcffVQ7bfqILPVBWbOzsx9//HEwGDx//ryT2j8/e2ZJWvKvkto6Cm2cMlwrE8kccUS0ll/0+/P0++scRbp8JtwlUHwq01PKp5m5dCA8ZP5RrRkxqDjL05YTBQLG+QNh/dla2lCL86UEwkODPbp1SWaF/mgkqDkXNaub7xICyewCEU+UmUsLoaGAGJ/LRIJBEufTWX4rr1+Wph5lWLCfxsfTgfDQYJezADTv0oVlHqux0Qwluk1GpCSE2PiIGMhSeEiTDNyUm1RLJhtreXQ0k4hNBsJ8Mpm2jc1kEyhN7mIP0Q7JVgzPqnMGwmE+mQ4MDfbwjNqngj5yMTUST/JKsJoxKKsVhFr4Xc0dDAYLhUIymbzhhhuczH+ZvmlfU2jrkNraC/4O5UHLnJJbiej2DbcQ0ZdfWWbq9HhseUt3qcV8z1YhVt7frZVGsKLqmG0s0V86xsapPxpVd3ZRnX8yMBSN8KQcEInO0gGRHp/rj0YjpbkTld9o2S1luZyISNS9Y5BX+hp8f3TQek2WD+7MXFoIRfjOhUB6QSTiF7JZIRTU1qiPoTJ4EucdB2C2ymJqiiLRKF9RaFxN02Y022RKQhANycBFuUm1thuLiLLJ7NZoNKKEluoa7OEd7k5Wq+Zkodoa1H1PTI3EiQJWK+JF+9hG3jPYn41NpnqDnVPjYnhoMGizglAbd+lV5fCuLf+avL+90NZeaGsv+NvzVB4WUHTzISL6kizTa2V3jh+MlnuAwZAwXu2AUHq12jHbQHwuEwlSRW83GBJosjw/ZdPxmHqXRaA85in0l6NQK1EXbL8U444+l4ilaTmd8Z08Jcdjok1Hge8SAukFkcQFMRDoVLpsiXmxZ2EuHQj02sUQrAzeTQBmq8z3RHgxNRIr919NFm3ZjLzJJsskxkVBoKSS5Ki2ckO1JpF3atc/EO4Nqs1qVYlBINDpcg/pNKum4kyL79kqJCfL/2LUPupyzTZKMNI/F4vHKBAeivDWs1m2ClTDNr22r8q1dRT8/oK/Pd/mLxDR8qVaMuULhUK+ygVeFoIhYXwy1RvsUY7byXmxx8GT8gOBTqIFm/8bs1wNI3t2S0mLYoBIs9MGI6WuVCyWtTgb4zv57NyCSGkSIrxmWgwIvVbrHAiYHt61BaAQUyPxJIWHolFeOdu1Wn+Ls0rNJiNSkkF4aLCHAuVeJNVUrqu2NraVZKaSJAzxRAte7SFOYvCqfcocnupjRMBTvr36X192pHp65bgrVy7dvUHY1nlb7/rNd6294ztr/uTKlUvq/2VZLkqSZPErTybE1Ehs+YoAzbetwd4wJeOaiwUyiZGUSMGQ5tvU0kHSxZNSPpUpVzqp6cIsl1MmsfxtRnpOnTuRLJ+Qa99VbSmZVHkGYevg4JCQjpe/jBZTqQwR8T2DQ+GA+p2VTjAkpOemslT+Gstk2jQGMw4DMFnlhWw2UPrKRJxPZ00aLZMqN7tpM2o2mZgaGU8LW3t4Ir4nEqZy9G7LddVaRO6A+QUEVB5IUVbb9R5SuubDork0+x6j9lEPGYvIlZQ8pM5vvYJQG1a912JRvuPb3+r6Fq8MBnA+P1GRZNnf3rFu3bqCJElSUSpKPl+tj4YpnyPzPPE9g9HOREw9qRH6oxGeiI9E+ytLlY9lZYwqVv56QaDSTh6MDIVH4rGYWkd5UQLNxWLjanHlARu0XMpybUpl5YO3FG4sRkJ/NNI5panbIhcEQ8L4eFoIRaymLWKwarrqAZiscrA3PBlXlhEQhPK3gcbV5K2acXlYYyqezAr96vhETyScjscTnf007qq8tCk0e4J55E5UVqIO+lMgXBqK1K9stT2kFGUsadlc2n2PTfv0qlWbRF4aNY/wPC23p+W2g5qo2S06Kr9Ge7kdsXLB8OHcqw/prhyQJGlmZiaZTHZ0dOzdu9em3jcPHVl/3XpjuXJdV1GSiuVhgmw2++B922+66Sa3oeN2GTYYtiujqj2ptg67k+F+AuzSLcYfHZVfGyAimn35vtti1Ld/+sOnBHnm5QdesHtb1d7rwEORCxcuWP3Cs5bP57vuOmfXZlVy/o0vNAhGm8yTaldkdxJTI1Odg+UrtMbTgXDF8Dl26RbDqel1TOm69u0/9eFTgsV1r5Ik5fP5eDy+evXqPXv21Dv41lN5QW597u9FF4olzbXD+Bqp5XHDh/P//JdERDT7yoN3PPPf5X9s/6cT7z8Z0j4oS02vb7311po1a4aHh+sWNQBAw/PJpbQpScEn/+Py5UuXLh36IRHRRyOjM5qsqs2whN/dAgCoxvfZqWklaY498eevTEuSJEWe+sd7iGhL6FbJhPrzMPWOHACgofk/+vGfrf0xEe3evfujN5SXRBR+7viL35UkSX3Mq3YElpBeAQCq8Wt+suWll17SPNJFSa7lb7cwOAAA4Ipf97sD2sdlEZHxygGkVwAAJ/xKulTZpFf0XgEAnLNMr1T+HUNjhiWkVwCAatylV/ReAQAc8udyOe20Mb2qtxWovxRLRNPT08iwAAA2fNVnMbjrrrs2bdrkeSgAAK2klvQKAABV+ScmJrTT6rCAbnxAHSVQnDt3rj7xAgA0CU5e/nkWomq/FKs80iWXy01MTOzcubNeQQMAND4MDgAAMIH0CgDABNIrAAATSK8AAEwgvQIAMIH0CgDABNIrAAATvr1cyd6xctnsKw/4/e3t7R0dHU++o8757tM8v2HDhptvvvmRf5mvR6gAAE1lVLl/YDRKFB2V5WJxev+e/b8pFPL5fO7wMNFjh5aWFhff3E109z9Mnj9//quvvjp9+vTBg8/VO3AAgMZWvj9r5kAfRUdLv6z1m5fuLf//sUNLS4tv/pDueX5SFJfT63N/Vc+gAQAanmHsdfblB9radtMb+Xw+d/LF7fWICQCgFSz3XZXBgbej1FcaHDj54r3awYG/iSu913979tkPMDgAAOBQdLT0DJfp/X2lonuHh7eX0uvixU+ev7tUvOsXp08fPHiwXoECADQFPDELAIAJXPcKAMCEv+Z36rq9hN83ZExt8KrtrNs0zreL8kZ1frf1WM2vq/YaUa+1bpzW1u4PDuOx2cllWdYV1lD/Cqu996quj3JXApkl3NZTx3V0tYOWbxZxsV1Mc6vzemzmb+Hdo14r1fiNqd0fyFnAurcY/3WV9a+82nuv16DG3IQ2nAds3+Vxu+KmZzbKaH5j9jJqY98s7Na0Xssl296lJzU7SaxNxPv0qt0ANieb2nZkXe5JnGqhaafM6rWxfpszbifr5Ryj3GrVya26XHYZ1mZ7mU662n+qbl9jxqmhftP57VfW4XJtBvGYnlx7VaF959TV7rTygwkefLWlHDNUjtjq88eqM8+63IrbOHWDIVU3j/3ncM3r5Yq3u7j2ta6tGC3XCfvtZYzT8/3HuD+Ybiz7+tktV/su0zZxuFyrhVblaixYLnMSiav66zKY4EF6tWrxGvopxnqMbW16kNiUV2Uap8NtXHP9NjN7slwPgzcW6pqaxXLdMm03+zhtQq3tw6wZebifW9VPbj5unac/mzNOq5qppvxwNRiOvWo/MK+yEtNC45azOZzcxulh67tqB8+X63BOm9P2Gj4jTcvdbhdPFurV/K3KbTsYT+aqzsy6qTlOf/G+zZwrFpWisa57tfos1ZbrxiKqlrOOh4Wrr7+2dGPVAdSxaee65FbtUrTxVN0fvNq+rPcH1stlEb+u8XX1Ox8E8DAez/NDVbWnV21ec1Kua2jjST2jcrfx29Rj+umnnd84tmWs34qT9XKyZ2jnd5XUdJVb1aN9bSwxXS7T3GrVbk7iJJf7lVUT6dZOmziMrXf1reFqubp3GStxu5O4HXm7yv3faqXcxu9h+zvnv4/jjlHfgZmj+7rdvdMqPpu43b7Fq3K3M7v9lzEF21RiOnPNb3EepBNO4rGZx5PtUgPWcbrdZK7qd7tx3S63hnbwhH3lNcfvfBFXP//V8x0jio66zq0AAGDPR30H/m6g3lEAALQc34FfoOcKAOA9H5IrAAALvpdn6x0CAEAr8v3tXyPBAgB4z0fHakywsoHnwTWUa2Q1nUNrANjz9VGNCVZ7gedK3ghRLytz0VyjtWGjxQPQRPxHcfw0jEbLZU5uDwMAK035vNeqi7ZaqGn9VrcYOlmWsdtec/3aO/9sVqHmdrAqt2oft/HY12PaCG7XC6C5NN/zXm1ob4g2Hu0ejmCYpoyrrF832GJMTw7rr609jeVW8WhnNl2Lq4wToGV40Hu1OtJkWeYMzwozHkWc5ml4umPYtNzGyhyipv3QxswOjd8lbMx2A/DESj/v1eapDca05eq03eps3XOc2dNRGz+RNSa0G7Sw+jzv1fQhY8aTWdYZU63Z7cCrVUi6a5Vqrt+ra54arR7n9ctl7BYKwFrzPe/VinZ+t8O1VWezqc0+Tuf1k0Vv/Wra4WrqsYqHLD4dncRjrLCGzx6AZlH74IDNlxtevcXtIWd6tl71FN5V2rJflilX6cNm8MQ5V+1pvyLO47Gpx+pfNewqAE2E4dhrgzOexTdX/QDQ4K7d9Mo65SGlAlzjGuunDAEAWoZP+e5l71i9AwEAaC0+WZZleWbLT5FgAQC8pIy9du87+lqdAwEAaC3Gsdexx9va/H5/e3t7R8cT7yhl6Vf71+97T3md+dkjt/4ET+AGALDnqxx3HXvc973P9p8qFAr5fD53mL6/+sl36xccAEDz8s0cOLFD/W5r7FCsb/8bT5V/3fChZ17Y/vPDyK8AAO75uvcdleXRaGyHxXdb22/HT8kCALinjr32bbmNaOAH0WNP736lPLL6zos/osGBkDLx+ewcEVHmvV9NrniUAADNKjpaekBRsfj2nuXi4V9evry0tLS4uPjJ8/coRdt27dpKjz538GB9AgUAaBImj7vWKmpIkiRJUj6fz+VyExMTO3furFfQAACNDzfFAgAwgfQKAMAE0isAABNIrwAATCC9AgAw4eJx2hcvXlSuHMjn81euXGEXEwBAC0DvFQCACf+vfz2vnU4mPx8a+q5y0eu6de11igoAoOn5Q6E/1k7LshyPvz84+Bf1CggAoDWYDA7cffeWePz9lQ8FAKCV6NPr8eMnP/74cyIaGUGGBQConf7KgZ07I8rAazyeqEtAAACtAVcOAAAwUUN6/c+/v3NXMp30PhYAgBZSW+/1k8Qxj+MAAGgxtaXXuyIPhz0OBACgtWDsFQCACaRXAAAmkF4BAJioIb0++OyJfw3z3ocCANBK0HsFAGAC6RUAgAn/wYMVN78qv8ut+3VuAABwy//YYwPaablSvcICAGh2GBwAAGDCxW9trV+/XvmtrVwut2rVKnYxAQC0APReAQCYQHoFAGAC6RUAgAmkVwAAJpBeAQCYQHoFAGAC6RUAgAmkVwAAJpBeAQCYQHoFAGAC6RUAgAmkVwAAJpBeAQCYQHoFAGAC6RUAgAmkVwAAJpBeAQCYQHoFAGAC6RUAgAmkVwAAJpBeAQCYQHoFAGAC6RUAgAmkVwAAJnwcx3Ect3es3oEAALQWnyzLsjyz5adIsAAAXvITEVH3vqOv1TkQAIDWYhx7HXu8rc3v97e3t3d0PPGOUpZ+tX/9vveU15mfPXLrT2ZXMEQAgGbkqxx3HXvc973P9p8qFAr5fD53mL6/+sl36xccAEDz8s0cOLFD/W5r7FCsb/8bT3WX/vnQMy9s//lh5FcAAPd83fuOyvJoNLbD4rut7bd3m5YDAIAddey1b8ttRAM/iB57evcr5ZHVd178EQ0OhJSJz2fniIgy7/1qcsWjBABoVtFRWVEsvr1nuXj4l5cvLy0tLS4ufvL8PUrRtl27ttKjzx08WJ9AAQCaBCfLsnZarlTUkCRJkqR8Pp/L5SYmJnbu3FmvoAEAGh9uigUAYALpFQCACaRXAAAmkF4BAJj4fzCCpL2WmCNNAAAAAElFTkSuQmCC" alt="" />(STL自带)一直超时找不到原因,改成手动队列跑得飞快,还有就是 string 类型也要谨慎使用,这些STL自带功能会消耗时间
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <queue>
using namespace std;
const int N = ;
int n,m,MAX;
char mp[N][N];
bool flag[N][N];
bool vis[N][N];
int dir[][] = {{,},{-,},{,-},{,}};
struct Node{
int x,y;
};
char res[N],ans[N],ans1[N];
bool check(int x,int y){
if(x<||x>n||y<||y>m||mp[x][y]=='#') return false;
return true;
}
Node q[N * N];
int bfs(int x,int y){
memset(flag,,sizeof(flag));
int head = , tail = ,ret = ;;
q[tail].x = x; ///手动队列非常快
q[tail++].y = y;
flag[x][y] = true;
while(head!= tail){
int nowx = q[head].x;
int nowy = q[head++].y;
for(int i=;i<;i++){
int nextx = nowx+dir[i][];
int nexty = nowy+dir[i][];
if(!check(nextx,nexty)||flag[nextx][nexty]||vis[nextx][nexty]) continue;
ret++;
flag[nextx][nexty] = true;
q[tail].x = nextx;
q[tail++].y = nexty;
}
}
return ret;
} void dfs(int x,int y,int step){
if(step>MAX||step==MAX&&strcmp(ans,res)>){
MAX = step;
strcpy(res,ans);
}
int GO = bfs(x,y); ///预处理最好的情况,所有点都可达
strcpy(ans1,ans);
ans1[step] = '';
if(GO+step<MAX||GO+step==MAX&&strcmp(ans1,res)<) return; ///剪枝,(x,y)能够走的距离 < 答案
for(int i=0;i<4;i++){
int nextx = x+dir[i][0];
int nexty = y+dir[i][];
if(!check(nextx,nexty)||vis[nextx][nexty]) continue;
vis[nextx][nexty] = true;
ans[step] = mp[nextx][nexty];
dfs(nextx,nexty,step+);
ans[step] = ;
vis[nextx][nexty] = false;
}
}
int main()
{
freopen("f.in","r",stdin);
freopen("f.txt","w",stdout);
while(scanf("%d%d",&n,&m)!=EOF,n+m){
int tot = ;
for(int i=;i<=n;i++){
scanf("%s",mp[i]+);
for(int j=;j<=m;j++){
if(mp[i][j]!='#') tot++;
}
}
memset(res,,sizeof(res));
MAX = -;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(mp[i][j]=='#'||MAX==tot&&mp[i][j]<res[]) continue;
memset(vis,false,sizeof(vis));
ans[] = mp[i][j];
vis[i][j] = true;
dfs(i,j,);
}
}
printf("%s\n",res);
}
return ;
}
/**
5 6
245356
342534
534635
423535
324345
*/
湖南省第六届省赛题 Biggest Number (dfs+bfs,好题)的更多相关文章
- UVA - 11882 Biggest Number(dfs+bfs+强剪枝)
题目大意:给出一个方格矩阵,矩阵中有数字0~9,任选一个格子为起点,将走过的数字连起来构成一个数,找出最大的那个数,每个格子只能走一次. 题目分析:DFS.剪枝方案:在当前的处境下,找出所有还能到达的 ...
- 湖南省第六届大学生程序设计大赛原题 F Biggest Number (UVA1182)
Biggest Number http://acm.hust.edu.cn/vjudge/contest/view.action?cid=30851#problem/F 解题思路:DFS(检索)+BF ...
- 湖南省第6届程序大赛第6题 Biggest Number
Problem F Biggest Number You have a maze with obstacles and non-zero digits in it: You can start fro ...
- 山东省第六届省赛 H题:Square Number
Description In mathematics, a square number is an integer that is the square of an integer. In other ...
- 蓝桥杯第六届省赛 手链样式 STL
小明有3颗红珊瑚,4颗白珊瑚,5颗黄玛瑙.他想用它们串成一圈作为手链,送给女朋友.现在小明想知道:如果考虑手链可以随意转动或翻转,一共可以有多少不同的组合样式呢? 分析:这个题首先一定要理解题意,转动 ...
- 算法笔记_119:蓝桥杯第六届省赛(Java语言A组)试题解答
目录 1 熊怪吃核桃 2 星系炸弹 3 九数分三组 4 循环节长度 5 打印菱形 6 加法变乘法 7 牌型种数 8 移动距离 9 垒骰子 10 灾后重建 前言:以下试题解答代码部分仅供参考,若有 ...
- 算法笔记_120:蓝桥杯第六届省赛(Java语言B组部分习题)试题解答
目录 1 三角形面积 2 立方变自身 3 三羊献瑞 4 九数组分数 5 饮料换购 6 生命之树 前言:以下试题解答代码部分仅供参考,若有不当之处,还请路过的同学提醒一下~ 1 三角形面积 三角形 ...
- 地铁 Dijkstra(优先队列优化) 湖南省第12届省赛
传送门:地铁 思路:拆点,最短路:拆点比较复杂,所以对边进行最短路,spfa会tle,所以改用Dijkstra(优先队列优化) 模板 /******************************** ...
- FZOJ--2221-- RunningMan 福建第六届省赛
题目链接:http://acm.hust.edu.cn/vjudge/contest/127149#problem/J 题目大意: 因为总共就分三个队,因为两个队都要选取最优的策略,不论B队咋放,要使 ...
随机推荐
- vim在行首和 行尾加
在每行开始加入“<a href=” vim 命令: :%s/^/<a href=/g 在每行尾加入 “</a>” vim命令 : ...
- jsp中文乱码终极解决方法
转载http://blog.csdn.net/csh624366188/article/details/6657350 一 找出问题的根源 乱码可能出现的地方:1 jsp页面中 ...
- [转]从头开始 GAN
1 前言 GAN的火爆想必大家都很清楚了,各种GAN像雨后春笋一样冒出来,大家也都可以名正言顺的说脏话了[微笑脸].虽然目前GAN的酷炫应用还集中在图像生成上,但是GAN也已经拓展到NLP,Robot ...
- Codeforces 480.E Parking Lot
E. Parking Lot time limit per test 3 seconds memory limit per test 256 megabytes input standard inpu ...
- [POI2014] KUR-Couriers (主席树)
[POI2014]KUR-Couriers 题目描述 Byteasar works for the BAJ company, which sells computer games. The BAJ c ...
- 2015年IPC网络摄像机技术发展现状分析
网络摄像机将图像转换为基于TCP/IP网络标准的数据包,使摄像机所摄的画面通过RJ-45以太网接口或WIFI WLAN无线接口直接传送到网络上,通过网络即可远端监视画面. 一.网络摄像机的基本原理 网 ...
- c++数组遍历十种方式
int ia[3][4] = {1,2,3,4,5,6,7,8}; //下标 for (int i = 0; i < 3; i++) { for (int j = 0; j < 4 ...
- JAVA多线程提高二:传统线程的互斥与同步&传统线程通信机制
本文主要是回顾线程之间互斥和同步,以及线程之间通信,在最开始没有juc并发包情况下,如何实现的,也就是我们传统的方式如何来实现的,回顾知识是为了后面的提高作准备. 一.线程的互斥 为什么会有线程的互斥 ...
- 重构改善既有代码设计--重构手法16:Introduce Foreign Method (引入外加函数)&& 重构手法17:Introduce Local Extension (引入本地扩展)
重构手法16:Introduce Foreign Method (引入外加函数)你需要为提供服务的类增加一个函数,但你无法修改这个类.在客户类中建立一个函数,并以第一参数形式传入一个服务类实例. 动机 ...
- 超越icon font
很久以前,我们如何使用图标? 1.切图 2.拼合(Sprites) 原始社会啊! 后来CSSGagagrunt-css-sprite 字体图标 相见不曾相识 Emoji绘文字 iconfont.cn直 ...