ImageNet

  1. 是一个超过15 million的图像数据集,大约有22,000类。
  2. 是由李飞飞团队从2007年开始,耗费大量人力,通过各种方式(网络抓取,人工标注,亚马逊众包平台)收集制作而成,它作为论文在CVPR-2009发布。当时人们还很怀疑通过更多数据就能改进算法的看法。
  3. 深度学习发展起来有几个关键的因素,一个就是庞大的数据(比如说ImageNet),一个是GPU的出现。(还有更优的深度模型,更好的优化算法,可以说数据和GPU推动了这些的产生,这些产生继续推动深度学习的发展)。

ILSVRC

  1. 是一个比赛,全称是ImageNet Large-Scale Visual Recognition Challenge,平常说的ImageNet比赛指的是这个比赛。
  2. 使用的数据集是ImageNet数据集的一个子集,一般说的ImageNet(数据集)实际上指的是ImageNet的这个子集,总共有1000类,每类大约有1000张图像。具体地,有大约1.2 million的训练集,5万验证集,15万测试集。
  3. ILSVRC从2010年开始举办,到2017年是最后一届。ILSVRC-2012的数据集被用在2012-2014年的挑战赛中(VGG论文中提到)。ILSVRC-2010是唯一提供了test set的一年。
  4. ImageNet可能是指整个数据集(15 million),也可能指比赛用的那个子集(1000类,大约每类1000张),也可能指ILSVRC这个比赛。需要根据语境自行判断。
  5. 12-15年期间在ImageNet比赛上提出了一些经典网络,比如AlexNet,ZFNet,OverFeat,VGG,Inception,ResNet。我在CNN经典结构1中做了相应介绍。
  6. 16年之后也有一些经典网络,比如WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet。我在CNN经典结构2中做了相应介绍。

ImageNet的分类结果(加粗为冠军)

网络/队名 val top-1 val top-5 test top-5 备注
2012 AlexNet 38.1% 16.4% 16.42% 5 CNNs
2012 AlexNet 36.7% 15.4% 15.32% 7CNNs。用了2011年的数据
2013 OverFeat 14.18% 7 fast models
2013 OverFeat 13.6% 赛后。7 big models
2013 ZFNet 13.51% ZFNet论文上的结果是14.8
2013 Clarifai 11.74%
2013 Clarifai 11.20% 用了2011年的数据
2014 VGG 7.32% 7 nets, dense eval
2014 VGG(亚军) 23.7% 6.8% 6.8% 赛后。2 nets
2014 GoogleNet v1 6.67% 7 nets, 144 crops
GoogleNet v2 20.1% 4.9% 4.82% 赛后。6 nets, 144 crops
GoogleNet v3 17.2% 3.58% 赛后。4 nets, 144 crops
GoogleNet v4 16.5% 3.1% 3.08% 赛后。v4+Inception-Res-v2
2015 ResNet 3.57% 6 models
2016 Trimps-Soushen 2.99% 公安三所
2016 ResNeXt(亚军) 3.03% 加州大学圣地亚哥分校
2017 SENet 2.25% Momenta 与牛津大学

ImageNet的定位结果(加粗为冠军)

网络/队名 val top-5 test top-5 备注
2012 AlexNet 34.19% 多伦多大学Hinton和他学生
2012 AlexNet 33.55% 用了2011年的数据
2013 OverFeat 30.0% 29.87% 纽约大学Lecun团队
2014 GoogleNet 26.44% 谷歌
2014 VGG 26.9% 25.32% 牛津大学
2015 ResNet 8.9% 9.02% 微软
2016 Trimps-Soushen 7.71% 公安三所,以Inception, resNet, WRN等为基础
2017 DPN 6.23% 新加坡国立大学与奇虎360

ImageNet的检测结果(加粗为冠军)

网络/队名 mAP(%) 备注
2013 OverFeat 19.40 使用了12年的分类数据预训练
2013 UvA 22.58
2013 OverFeat 24.3 赛后。使用了12年的分类数据预训练
2014 GoogleNet 43.93 R-CNN
2015 ResNet 62.07 Faster R-CNN
2016 CUImage 66.28 商汤和港中文,以GBD-Net等为基础
2017 BDAT 73.41 南京信息工程大学和帝国理工学院

其它
HikVision(海康威视):2016年的场景分类第一

ImageNet历年冠军和相关CNN模型的更多相关文章

  1. ImageNet 历届冠军最新评析:哪个深度学习模型最适合你?

    原文链接: https://mp.weixin.qq.com/s/I5XgYrPCCGyfV2qTI0sJhQ 深度神经网络自出现以来,已经成为计算机视觉领域一项举足轻重的技术.其中,ImageNet ...

  2. CNN 模型压缩与加速算法综述

    本文由云+社区发表 导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一. 前言 自从AlexNet一举夺得 ...

  3. 经典CNN模型计算量与内存需求分析

    表1 CNN经典模型的内存,计算量和参数数量对比 AlexNet VGG16 Inception-v3 模型内存(MB) >200 >500 90-100 参数(百万) 60 138 23 ...

  4. 基于Pre-Train的CNN模型的图像分类实验

    基于Pre-Train的CNN模型的图像分类实验  MatConvNet工具包提供了好几个在imageNet数据库上训练好的CNN模型,可以利用这个训练好的模型提取图像的特征.本文就利用其中的 “im ...

  5. 凭什么相信你,我的CNN模型

    背景 学术界一直困惑的点是"如何让看似黑盒的CNN模型说话",即对它的分类结果给出解释. 这里的解释是指,让模型告诉我们它是通过图片的哪些像素做出判断的,并不是深度学习理论层面的解 ...

  6. 深度学习方法(七):最新SqueezeNet 模型详解,CNN模型参数降低50倍,压缩461倍!

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 继续前面关于深度学习CNN经典模型的 ...

  7. 总结近期CNN模型的发展(一)---- ResNet [1, 2] Wide ResNet [3] ResNeXt [4] DenseNet [5] DPNet [9] NASNet [10] SENet [11] Capsules [12]

    总结近期CNN模型的发展(一) from:https://zhuanlan.zhihu.com/p/30746099 余俊 计算机视觉及深度学习   1.前言 好久没有更新专栏了,最近因为项目的原因接 ...

  8. 【翻译】借助 NeoCPU 在 CPU 上进行 CNN 模型推理优化

    本文翻译自 Yizhi Liu, Yao Wang, Ruofei Yu.. 的  "Optimizing CNN Model Inference on CPUs" 原文链接: h ...

  9. 卷积神经网络(CNN)模型结构

    在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用 ...

随机推荐

  1. Python3x 爬取妹子图

    思路:1.get_totalpages(url)  通过[性.感.美.女.图]获得该版块的总页数 [首页1234567891011下一页末页共 21页1034条] 2.get_sercoverurl( ...

  2. POJ2456 Aggressive cows(二分+贪心)

    如果C(d)为满足全部牛之间的距离都不小于d. 先对牛舍的位置排序,然后二分枚举d,寻找满足条件的d. #include<iostream> #include<cstdio> ...

  3. Android——4.2.2 源代码文件夹结构分析

    近期公司要整android内部培训,分配给我写个培训文档.这里记录例如以下: 撰写不易,转载请注明出处:http://blog.csdn.net/jscese/article/details/4089 ...

  4. NGINX优化参数

    (1)nginx运行工作进程个数,一般设置cpu的核心或者核心数x2 如果不了解cpu的核数,可以top命令之后按1看出来,也可以查看/proc/cpuinfo文件 grep ^processor / ...

  5. git 学习(3)文件删除恢复

    git学习(3) 撤销编辑 如果我们在编辑版本a的时候,如果在没有add之前,发现需要重新编辑版本a怎么办呢,可以通过git reset --hard comm_id, commit_id是版本a的提 ...

  6. UITextView 的 return响应事件

    在UITextView里没有UITextField里的- (BOOL)textFieldShouldReturn:(UITextField *)textField;直接的响应事件;那么在TextVie ...

  7. android mock location

    原理:用 setTestProviderLocation 设置模拟gps的位置 http://androidcookbook.com/Recipe.seam?recipeId=1229 http:// ...

  8. 把www.domain.com均衡到本机不同的端口 反向代理 隐藏端口 Nginx做非80端口转发 搭建nginx反向代理用做内网域名转发 location 规则

    负载均衡-Nginx中文文档 http://www.nginx.cn/doc/example/loadbanlance.html 负载均衡 一个简单的负载均衡的示例,把www.domain.com均衡 ...

  9. Spring Cloud Zuul与网关中间件

    Spring Cloud Zuul与网关中间件_网易订阅 http://dy.163.com/v2/article/detail/DC7L8UV10511HSJK.html

  10. Python overall structer

    在C/C++/Java中,main是程序执行的起点,Python中,也有类似的运行机制,但方式却截然不同:Python使用缩进对齐组织代码的执行,所有没有缩进的代码(非函数定义和类定义),都会在载入时 ...