题意:给一段子序列,定义密度:子序列中的逆序对数/子序列的长度

求这个序列的对大密度.

分析:将序列中的每个位置视作点,逆序对\(<i,j>\)之间表示点i与点j之间有一条无向边.所以就转化为了最大密度子图的模型.

#include<bits/stdc++.h>
using namespace std;
#define eps 1e-7
#define INF 0x3f3f3f3f
const int MAXN=1010;//点数的最大值
const int MAXM=400010;//边数的最大值
#define captype double
struct Edge{
int from,to,next;
captype cap;
}; struct SAP_MaxFlow{
Edge edges[MAXM];
int tot,head[MAXN];
int gap[MAXN];
int dis[MAXN];
int cur[MAXN];
int pre[MAXN]; void init(){
tot=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int u,int v,captype c,captype rc=0){
edges[tot] = (Edge){u,v,head[u],c}; head[u]=tot++;
edges[tot] = (Edge){v,u,head[v],rc}; head[v]=tot++;
} captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0;
int u=sNode;
while(dis[sNode]<n){
if(u==eNode){
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to])
if(Min>edges[i].cap){
Min=edges[i].cap;
inser=i;
}
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to]){
edges[i].cap-=Min;
edges[i^1].cap+=Min;
}
ans+=Min;
u=edges[inser^1].to;
continue;
}
bool flag = false;
int v;
for(int i=cur[u]; i!=-1; i=edges[i].next){
v=edges[i].to;
if(edges[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
int Mind= n;
for(int i=head[u]; i!=-1; i=edges[i].next)
if(edges[i].cap>0 && Mind>dis[edges[i].to]){
Mind=dis[edges[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans;
dis[u]=Mind+1;
gap[dis[u]]++;
if(u!=sNode) u=edges[pre[u]^1].to; //退一条边
}
return ans;
}
}F; int N, M;
int S,T;
int deg[MAXN];
int ed[MAXM][2]; bool check(double mid)
{
F.init();
S = 0, T = N+1;
for(int i=1;i<=N;++i){
F.AddEdge(S,i,M*1.0);
F.AddEdge(i,T,1.0*M + 2*mid - deg[i]);
}
for(int i=1;i<=M;++i){
F.AddEdge(ed[i][0],ed[i][1], 1.0);
F.AddEdge(ed[i][1],ed[i][0], 1.0);
}
double hg = ( 1.0 * M * N - F.maxFlow_sap(S,T,T+1)) *0.5;
return hg>eps;
} int p[MAXN]; int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
int u,v;
int T,cas=1; scanf("%d",&T);
while(T--){
printf("Case #%d: ",cas++);
scanf("%d",&N);
for(int i=1;i<=N;++i) scanf("%d",&p[i]);
M = 0 ;
memset(deg,0,sizeof(deg));
for(int i=1;i<=N;++i){
for(int j=i+1;j<=N;++j){
if(p[i]>p[j]){
M ++;
ed[M][0] = i, ed[M][1] = j;
deg[i]++, deg[j]++;
}
}
}
double L = 0.0, R = M*1.0; while(R-L>= eps){
double mid = (R+L)*0.5;
if(check(mid)){
L = mid;
}else{
R = mid;
}
}
printf("%.7f\n",L);
}
return 0;
}

Uvalive 7037 The Problem Needs 3D Arrays(最大密度子图)的更多相关文章

  1. Gym - 100548C The Problem Needs 3D Arrays

    Problem C.   The Problem Needs 3D Arrays Time Limit: 6000MS Memory Limit: 262144KB 64bit IO Format: ...

  2. 2014 西安 The Problem Needs 3D Arrays

    The Problem Needs 3D Arrays 题意:给你n个数, 然后1-n的数, 然后要求按顺序选出m个数, 求 逆序数/m 个数的 最大值是多少. 题解:裸的最大密度子图.逆序的2个数建 ...

  3. UVALive 7037:The Problem Needs 3D Arrays(最大密度子图)

    题目链接 题意 给出n个点,每个点有一个值,现在要选择一些点的集合,使得(选择的点生成的逆序对数目)/(选择的点的数量)的比率最大. 思路 点与点之间生成一个逆序对可以看做是得到一个边,那么就是分数规 ...

  4. Gym - 100548C The Problem Needs 3D Arrays (最大密度子图)

    TK在大多数 Unix平台.Windows平台和Macintosh系统都是预装好的,TKinter 模块是 Tk GUI 套件的标准Python接口.可实现Python的GUI编程. Tkinter模 ...

  5. 14西安区域赛C - The Problem Needs 3D Arrays

    最大密度子图裸题,详情请见胡博涛论文: https://wenku.baidu.com/view/986baf00b52acfc789ebc9a9.html 不加当前弧优化t到死= = //#prag ...

  6. POJ 3155 Hard Life 最大密度子图 最大权闭合图 网络流 二分

    http://poj.org/problem?id=3155 最大密度子图和最大权闭合图性质很相近(大概可以这么说吧),一个是取最多的边一个是取最多有正贡献的点,而且都是有选一种必须选另一种的限制,一 ...

  7. POJ 3155 Hard Life(最大密度子图)

    裸题.输入一个无向图,输出最大密度子图(输出子图结点数和升序编号). 看了<最小割模型在信息学竞赛中的应用——胡伯涛>的一部分,感觉01分数规划问题又是个大坑.暂时还看不懂. 参考http ...

  8. poj 3155 最大密度子图

    思路: 这个还是看的胡伯涛的论文<最小割在信息学竞赛中的应用>.是将最大密度子图问题转化为了01分数规划和最小割问题. 直接上代码: #include <iostream> # ...

  9. POJ3155 Hard Life [最大密度子图]

      题意:最大密度子图 #include<iostream> #include<cstdio> #include<cstring> #include<algo ...

随机推荐

  1. [转]Tcpcopy简介与实战

    Tcpcopy简介 TCPCopy是一种请求复制(所有基于tcp的packets)工具 ,其功能是复制在线数据包,修改TCP/IP头部信息,发送给测试服务器,达到欺骗测试服务器的TCP 程序的目的,从 ...

  2. 【mysql】windows7 安装 Mysql

    From: http://jingyan.baidu.com/article/e52e3615a1128c40c70c5174.html 安装(解压) ZIP Archive版是免安装的.只要解压就行 ...

  3. 【python】NLTK好文

    From:http://m.blog.csdn.net/blog/huyoo/12188573 nltk是一个python工具包, 用来处理和自然语言处理相关的东西. 包括分词(tokenize), ...

  4. SVN入门 服务器VisualSVN Server和客户端TortoiseSVN安装

    Subversion是一个版本控制系统,相对于的RCS.CVS,采用了分支管理系统,它的设计目标就是取代CVS.互联网上免费的版本控制服务多基于Subversion. 一.SVN工作原理 SVN(Su ...

  5. laravel 调试模式及日志配置

    1)调试模式和日志的配置都在 config/app.php 配置文件中 2)打开调试模式 'debug' => env('APP_DEBUG', true) 3)laravel的日志默认已经打开 ...

  6. Android模拟器基本使用和常用工具介绍

    注:其中部分内容参考网上资源 1.Android模拟器介绍 Android中提供了一个模拟器来模拟ARM核的移动设备.Android的模拟器是基于QEMU开发的,QEMU是一个有名的开源虚拟机项目(详 ...

  7. C++随机数生成方法(转载,赶紧搜藏)

    一.C++中不能使用random()函数 =============================================================================== ...

  8. JDK的图文安装教程

    JDK的安装 什么是JDK? JDK就是Java开发工具包,即Java Development Kit.就是做Java开发所需要的最基本的工具.包括Java编译器(把人使用的Java语言变成JVM能运 ...

  9. HDU 4605 Magic Ball Game(可持续化线段树,树状数组,离散化)

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  10. servlet容器与web容器的概念

    一般的说法是这样的,servlet容器的主要任务是管理servlet的生命周期.而web容器更准确的说应该叫web服务器,它是来管理和部署 web应用的.还有一种服务器叫做应用服务器,它的功能比web ...