Uvalive 7037 The Problem Needs 3D Arrays(最大密度子图)
题意:给一段子序列,定义密度:子序列中的逆序对数/子序列的长度
求这个序列的对大密度.
分析:将序列中的每个位置视作点,逆序对\(<i,j>\)之间表示点i与点j之间有一条无向边.所以就转化为了最大密度子图的模型.
#include<bits/stdc++.h>
using namespace std;
#define eps 1e-7
#define INF 0x3f3f3f3f
const int MAXN=1010;//点数的最大值
const int MAXM=400010;//边数的最大值
#define captype double
struct Edge{
int from,to,next;
captype cap;
};
struct SAP_MaxFlow{
Edge edges[MAXM];
int tot,head[MAXN];
int gap[MAXN];
int dis[MAXN];
int cur[MAXN];
int pre[MAXN];
void init(){
tot=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int u,int v,captype c,captype rc=0){
edges[tot] = (Edge){u,v,head[u],c}; head[u]=tot++;
edges[tot] = (Edge){v,u,head[v],rc}; head[v]=tot++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0;
int u=sNode;
while(dis[sNode]<n){
if(u==eNode){
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to])
if(Min>edges[i].cap){
Min=edges[i].cap;
inser=i;
}
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to]){
edges[i].cap-=Min;
edges[i^1].cap+=Min;
}
ans+=Min;
u=edges[inser^1].to;
continue;
}
bool flag = false;
int v;
for(int i=cur[u]; i!=-1; i=edges[i].next){
v=edges[i].to;
if(edges[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
int Mind= n;
for(int i=head[u]; i!=-1; i=edges[i].next)
if(edges[i].cap>0 && Mind>dis[edges[i].to]){
Mind=dis[edges[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans;
dis[u]=Mind+1;
gap[dis[u]]++;
if(u!=sNode) u=edges[pre[u]^1].to; //退一条边
}
return ans;
}
}F;
int N, M;
int S,T;
int deg[MAXN];
int ed[MAXM][2];
bool check(double mid)
{
F.init();
S = 0, T = N+1;
for(int i=1;i<=N;++i){
F.AddEdge(S,i,M*1.0);
F.AddEdge(i,T,1.0*M + 2*mid - deg[i]);
}
for(int i=1;i<=M;++i){
F.AddEdge(ed[i][0],ed[i][1], 1.0);
F.AddEdge(ed[i][1],ed[i][0], 1.0);
}
double hg = ( 1.0 * M * N - F.maxFlow_sap(S,T,T+1)) *0.5;
return hg>eps;
}
int p[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
int u,v;
int T,cas=1; scanf("%d",&T);
while(T--){
printf("Case #%d: ",cas++);
scanf("%d",&N);
for(int i=1;i<=N;++i) scanf("%d",&p[i]);
M = 0 ;
memset(deg,0,sizeof(deg));
for(int i=1;i<=N;++i){
for(int j=i+1;j<=N;++j){
if(p[i]>p[j]){
M ++;
ed[M][0] = i, ed[M][1] = j;
deg[i]++, deg[j]++;
}
}
}
double L = 0.0, R = M*1.0;
while(R-L>= eps){
double mid = (R+L)*0.5;
if(check(mid)){
L = mid;
}else{
R = mid;
}
}
printf("%.7f\n",L);
}
return 0;
}
Uvalive 7037 The Problem Needs 3D Arrays(最大密度子图)的更多相关文章
- Gym - 100548C The Problem Needs 3D Arrays
Problem C. The Problem Needs 3D Arrays Time Limit: 6000MS Memory Limit: 262144KB 64bit IO Format: ...
- 2014 西安 The Problem Needs 3D Arrays
The Problem Needs 3D Arrays 题意:给你n个数, 然后1-n的数, 然后要求按顺序选出m个数, 求 逆序数/m 个数的 最大值是多少. 题解:裸的最大密度子图.逆序的2个数建 ...
- UVALive 7037:The Problem Needs 3D Arrays(最大密度子图)
题目链接 题意 给出n个点,每个点有一个值,现在要选择一些点的集合,使得(选择的点生成的逆序对数目)/(选择的点的数量)的比率最大. 思路 点与点之间生成一个逆序对可以看做是得到一个边,那么就是分数规 ...
- Gym - 100548C The Problem Needs 3D Arrays (最大密度子图)
TK在大多数 Unix平台.Windows平台和Macintosh系统都是预装好的,TKinter 模块是 Tk GUI 套件的标准Python接口.可实现Python的GUI编程. Tkinter模 ...
- 14西安区域赛C - The Problem Needs 3D Arrays
最大密度子图裸题,详情请见胡博涛论文: https://wenku.baidu.com/view/986baf00b52acfc789ebc9a9.html 不加当前弧优化t到死= = //#prag ...
- POJ 3155 Hard Life 最大密度子图 最大权闭合图 网络流 二分
http://poj.org/problem?id=3155 最大密度子图和最大权闭合图性质很相近(大概可以这么说吧),一个是取最多的边一个是取最多有正贡献的点,而且都是有选一种必须选另一种的限制,一 ...
- POJ 3155 Hard Life(最大密度子图)
裸题.输入一个无向图,输出最大密度子图(输出子图结点数和升序编号). 看了<最小割模型在信息学竞赛中的应用——胡伯涛>的一部分,感觉01分数规划问题又是个大坑.暂时还看不懂. 参考http ...
- poj 3155 最大密度子图
思路: 这个还是看的胡伯涛的论文<最小割在信息学竞赛中的应用>.是将最大密度子图问题转化为了01分数规划和最小割问题. 直接上代码: #include <iostream> # ...
- POJ3155 Hard Life [最大密度子图]
题意:最大密度子图 #include<iostream> #include<cstdio> #include<cstring> #include<algo ...
随机推荐
- UIWindow小记
If you choose to create a window in Interface Builder, be sure to select the Full Screen at Launch o ...
- c# word excel 二进制 存入数据库
在Sql Server中存储.读写Word文件,需要将指定表字段添加为Image类型,示例表结构为:1 CREATE TABLE CONTRACTS ( 2 ID VARCHAR (50), 3 CO ...
- 将list列表中unicode类型的值转换为字符串类型
- kotlin正式由Goole公布为Android的最新开发语言
那么,现在大家开发Android的话一般来说都是直接用Java,这个没错吧(高手除外).嗯,那么用力那么久的Java,不知道大家是否有想过Java的不足,已经很多可以优化的地方呢.当然,新修订的版本中 ...
- 苹果微信浏览器不能post方式提交数据问题
form表单中采用post方式提交数据时,在苹果的微信浏览器中无法传递,安卓的可以 如图: 在controller中获取该数据为 null 将表单的提交方式修改为get就能够获取到 现在采用Ajax方 ...
- ES6数组相关
ES6数组新增的几个方法: 1. forEach() //forEach()遍历数组,无返回值,不改变原数组 var arr=[1,2,3,4] arr.forEach((item,index,arr ...
- JRebel插件安装配置与破解激活(多方案)详细教程
JRebel 介绍 IDEA上原生是不支持热部署的,一般更新了 Java 文件后要手动重启 Tomcat 服务器,才能生效,浪费不少生命啊.目前对于idea热部署最好的解决方案就是安装JRebel插件 ...
- SaltStack数据系统-Pillar
上一篇:SaltStack数据系统-Grains 使用saltstack进行配置管理可以使用pillar定义主机假如是Openstack修改了一下nova的密码就需要修改很多配置文件 pillar很安 ...
- react-native 学习(一)
本包子很久没更新过博客啊... 学习react-native 可以从官网上去学习.但是 目前我看到的中文网和英文网他们初始构建的项目的命令行是不同的. 在中文网上,构建项目的 react-native ...
- Python量化常用函数
# -*- coding: utf-8 -*- # @Author: fangbei # @Date: 2017-08-26 # @Original: price_str = '30.14, 29.5 ...