[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程
基于NVidia开源的nvidia/cuda
image,构建适用于DeepLearning的基础image。
思路就是先把常用的东西都塞进去,再装某个框架就省事儿了。
为了体验重装系统的乐趣,所以采用慢慢来比较快的步骤,而不是通过Dockerfile
来build。
环境信息
已经安装了Docker CE
和nvidia-docker2
Host OS: Ubuntu 18.04 64 bit
CUDA: 10.0
cuDNN: 7.4
Docker CE: 18.09.1
nvidia-docker2: 2.0.3
镜像信息
拉取镜像nvidia/cuda
:
$ sudo docker pull nvidia/cuda
目前拉取到的镜像nvidia/cuda
信息如下:
OS: Ubuntu 18.04.1 LTS
CUDA: 10.0
Size: 2.24GB
启动镜像
创建目录base
,方便数据导入导出,映射为容器内的/host
目录,然后在这个目录下运行命令创建容器dl-base
。
$ sudo nvidia-docker run -it --name dl-base -v `pwd`:/host nvidia/cuda
一切顺利的话,出现类似下面的命令行:
root@a336efb2d5b0:/host#
可以运行nvidia-smi
验证容器内的CUDA环境正常。
替换阿里源
大陆的网络环境下,阿里源速度还不错。
将下面的内容存为base
目录下的sources.list
文件。
deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted
deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted
deb http://mirrors.aliyun.com/ubuntu/ bionic universe
deb http://mirrors.aliyun.com/ubuntu/ bionic-updates universe
deb http://mirrors.aliyun.com/ubuntu/ bionic multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-updates multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted
deb http://mirrors.aliyun.com/ubuntu/ bionic-security universe
deb http://mirrors.aliyun.com/ubuntu/ bionic-security multiverse
在容器命令行下运行命令更新源。
$ cp /host/sources.list /etc/apt/sources.list
$ apt update
安装基本工具
$ apt install -y vim curl git iputils-ping net-tools telnet tmux unzip
创建工作及下载目录
$ mkdir -p /work/download
修改~/.bashrc
在文件尾部添加下面内容:
alias u='cd ..'
alias ins='apt install -y'
alias ta='tmux a -t'
export PATH=/usr/local/cuda-10.0/bin:$PATH
export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig
export LD_LIBRARY_PATH="/usr/local/lib:/usr/local/cuda-10.0/lib64:/home/etworker/anaconda3/lib:$LD_LIBRARY_PATH"
export CUDNN_PATH="/usr/local/cuda-10.0/lib64/libcudnn.so"
再使其生效:
$ source ~/.bashrc
安装cnDNN
Host下虽然已经安装了cnDNN环境,但是容器内没法使用,所以需要再搞一把。
先将cnDNN的压缩包解压到base
目录,此处为cudnn-10.0-linux-x64-v7.4.2.24
目录,在容器命令行下运行:
$ cp /host/cudnn-10.0-linux-x64-v7.4.2.24/cuda/include/cudnn.h /usr/local/cuda-10.0/include
$ cp /host/cudnn-10.0-linux-x64-v7.4.2.24/cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64
$ chmod a+r /usr/local/cuda-10.0/include/cudnn.h /usr/local/cuda-10.0/lib64/libcudnn*
然后验证一下,不报错就OK了。
$ echo -e '#include"cudnn.h"\n void main(){}' | nvcc -x c - -o /dev/null -lcudnn
安装openssh-server
$ apt install -y openssh-server
修改/etc/ssh/sshd_config
,找到#PermitRootLogin
开头的这一行,修改为PermitRootLogin yes
,这样就可以通过root登录了。
然后修改密码:
$ passwd
两次输入密码,然后重启ssh:
$ /etc/init.d/ssh restart
出现下面内容就OK了。
* Restarting OpenBSD Secure Shell server sshd [ OK ]
这里为了简单粗暴,采用了root来登陆。
如果考虑安全,可自行创建用户,并对ssh进行配置。
安装python常用组件
Ubuntu 18.04的容器,默认安装了python 3.6.7
,此时还需安装pip:
$ apt install -y python3-pip
建议不要更新pip,否则容易出现问题。
创建pip的配置文件目录~/.pip
,再创建文件~/.pip/pip.conf
,内容如下:
[global]
trusted-host=mirrors.aliyun.com
index-url=https://mirrors.aliyun.com/pypi/simple/
安装常用的包:
$ pip3 install numpy matplotlib Pillow scipy jupyter pandas h5py easydict sklearn
安装opencv-python
$ apt install -y libsm6 libxext6 libfontconfig1 libxrender1
$ pip3 install opencv-python
此时安装的opencv版本是4.0.0。
保存镜像
至此,就可以在Host下运行命令将容器保存为镜像了。
$ sudo nvidia-docker commit dl-base dl/base
这样就生成了一个镜像dl/base
,大小为4.36GB。
在此镜像基础上,可以自行安装不同的框架。
jupyter notebook
如果希望在容器中启动jupyter notebook
,需要加上参数如下:
$ jupyter notebook --ip=0.0.0.0 --allow-root
[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程的更多相关文章
- [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2
之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础im ...
- 基于NVIDIA GPUs的深度学习训练新优化
基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用 ...
- vitess基础镜像构建流程Centos
以下列出了构建vitess使用的Centos镜像的简单流程,由于较早基础版本是Centos7.2的,重新构建可以基于最新的Centos版本构建 1.基础镜像拉取 #拉取官方版本 docker pull ...
- NVIDIA GPUs上深度学习推荐模型的优化
NVIDIA GPUs上深度学习推荐模型的优化 Optimizing the Deep Learning Recommendation Model on NVIDIA GPUs 推荐系统帮助人在成倍增 ...
- CUDA上深度学习模型量化的自动化优化
CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数 ...
- NVIDIA TensorRT高性能深度学习推理
NVIDIA TensorRT高性能深度学习推理 NVIDIA TensorRT 是用于高性能深度学习推理的 SDK.此 SDK 包含深度学习推理优化器和运行时环境,可为深度学习推理应用提供低延迟和高 ...
- 算法工程师<深度学习基础>
<深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构, ...
- 大数据下基于Tensorflow框架的深度学习示例教程
近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较 ...
- 机器学习&深度学习基础(目录)
从业这么久了,做了很多项目,一直对机器学习的基础课程鄙视已久,现在回头看来,系统的基础知识整理对我现在思路的整理很有利,写完这个基础篇,开始把AI+cv的也总结完,然后把这么多年做的项目再写好总结. ...
随机推荐
- HDU1717--小数化分数2
这道题是将输入的小数(有可能是无限循环小数)来化为分数.刚開始看到以为枚举(千万不要嘲笑我),可是感觉不正确. 所以百度了小数化为分数的方法,然后看到了各种方法,原来是这这样,在这我採用的是小数化为分 ...
- 一起talk C栗子吧(第十回:C语言实例--最小公倍数)
各位看官们,大家好.从今天開始,我们讲大型章回体科技小说 :C栗子.也就是C语言实例. 闲话休提, 言归正转.让我们一起talk C栗子吧! 看官们,上一回中咱们说的是最大公约数的样例,这一回咱们说的 ...
- 比较难的sql面试题--记录下来晚上做
一组通话记录(总共500万条):ID 主叫号码 被叫号码 通话起始时间 通话结束时间 通话时长1 98290000 0215466546656 2007-02-01 09:4 ...
- linux 远端执行shell脚本 批量结束各个远端节点进程
#以下是一个本地的shell脚本,用于同时重启远端多台服务器tomcat服务 #!/bin/sh# ancyshi 重新启动节点tomcat服务function restartNodeTomcatSe ...
- 利用WM_COPYDATA消息实现进程间通信
进程间通信最简单的方式就是发送WM_COPYDATA消息,下面通过例子来实现. 发送WM_COPYDATA消息: SendMessage(hRecvWnd, WM_COPYDATA, (WPARAM) ...
- leetcode -- Maximal Rectangle TODO O(N)
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...
- 解决 Unable to load native-hadoop library for your platform
安装hadoop启动之后总有警告:Unable to load native-hadoop library for your platform... using builtin-java classe ...
- ios 对日期的处理(包括计算昨天时间、明天时间)
NSDate存储的是世界标准时(UTC),输出时需要根据时区转换为本地时间 Dates NSDate类提供了创建date,比较date以及计算两个date之间间隔的功能.Date对象是不可改变的. 如 ...
- 打开wamp中的phpmyadmin出现403的错误
安装完wamp后打开其下的phpMyAdmin也就是路径 http://localhost/phpmyadmin/ 如果端口不是 80 要加下端口,比如我是 8888 ,所以我的地址是:http:// ...
- iermu爱耳目
百度推出720P 云直播摄像头 查看直播请点击 直播 互联网网盘新动向实现初见端倪,之前写过一篇关于互联网网盘的思考. 我只是仅仅有想法而已,百度已经实现了一部分. 具体功能参见http://www. ...