一、开篇

Permutation,排列问题。这篇博文以几道LeetCode的题目和引用剑指offer上的一道例题入手,小谈一下这种类型题目的解法。

二、上手

最典型的permutation题目是这样的:

Given a collection of numbers, return all possible permutations.

For example,
[1,2,3] have the following permutations:
[1,2,3][1,3,2][2,1,3][2,3,1][3,1,2], and [3,2,1].

class Solution {
public:
vector<vector<int> > permute(vector<int> &num) {
}
};

我第一次接触这类问题是在剑指offer里,见笔记 面试题 28(*),字符串的排列(排列问题的典型解法:采用递归,每次交换首元素和剩下元素中某一个的位置) 。

书中对这种问题采用的方法是“交换元素”,这种方法的好处是不需要再新开一个数组存临时解,从而节省一部分辅助空间。

交换法的思路是for(i = start to end),循环中: swap (第start个和第i个),递归调用(start+1),swap back

根据这个思路,可以轻易写出这道题的代码:

class Solution {
public:
vector<vector<int> > permute(vector<int> &num) {
if(num.size() == ) return res;
permuteCore(num, );
return res;
}
private:
vector<vector<int> > res;
void permuteCore(vector<int> &num, int start){
if(start == num.size()){
vector<int> v;
for(vector<int>::iterator i = num.begin(); i < num.end(); ++i){
v.push_back(*i);
}
res.push_back(v);
}
for(int i = start; i < num.size(); ++i){
swap(num, start, i);
permuteCore(num, start+);
swap(num, start, i);
}
}
void swap(vector<int> &num, int left, int right){
int tmp = num[left];
num[left] = num[right];
num[right] = tmp;
}
};

permutation II 是在上一题的基础上,增加了“数组元素可能重复”的条件。

这样,如果用交换法来解,需要定义一个set来存储已经交换过的元素值。

class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
if(num.size() <= ) return res;
permCore(num, );
return res;
}
private:
vector<vector<int> > res;
void permCore(vector<int> &num, int st){
if(st == num.size()) res.push_back(num);
else{
set<int> swp;
for(int i = st; i < num.size(); ++i){
if(swp.find(num[i]) != swp.end()) continue;
swp.insert(num[i]);
swap(num, st, i);
permCore(num, st+);
swap(num, st, i);
}
}
} void swap(vector<int> &num, int left, int right){
int tmp = num[left];
num[left] = num[right];
num[right] = tmp;
}
};

题外话:交换法只是解法的一种,其实我们还可以借鉴Next permuation的思路(见这个系列的第二篇)来解这一道题,从而省去了使用递归。

使用Next permutation的思路来解 Permutation II

class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
if(num.size() <= ) return res;
sort(num.begin(), num.end());
res.push_back(num);
int i = , j = ;
while(){
//Calculate next permutation
for(i = num.size()-; i >= && num[i] >= num[i+]; --i);
if(i < ) break;
for(j = num.size()-; j > i && num[j] <= num[i]; --j);
swap(num, i, j);
j = num.size()-;
++i;
while(i < j)
swap(num, i++, j--);
//push next permutation
res.push_back(num);
}
return res;
}
private:
vector<vector<int> > res;
void swap(vector<int> &num, int left, int right){
int tmp = num[left];
num[left] = num[right];
num[right] = tmp;
}
};

三、应用

Permutation类问题一个典型的应用就是N皇后问题,以LeetCode上的n-queens题和 n-queens II 为例:

n-queens

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."], ["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
class Solution {
public:
vector<vector<string> > solveNQueens(int n) { }
};

上面是题 n-queens 的内容,题 n-queens II 其实反而更容易,它要求不变,只是不需要返回所有解,只要返回解的个数。

有了上面的思路,如果用A[i] = j 表示第i 行的皇后放在第j列上,N-queen也是一个全排列问题,只是排列时需要加上一个额外判断,就是两个皇后是否在一条斜线上。

真正实现的时候我犯了一个错误。

如上所说,交换法的思路是for(i = start to end),循环中: switch(第start个和第i个),递归调用(start+1),switch back

我错误的认为N皇后不需要switch back,其实 switch back是必须要做的步骤,因为这种解法的本质是还是深搜,子递归会层层调用下去,不及时swtich back的话,当前层的下一次递归调用会把重复的值switch过来,从而出现重复,结果是漏掉了一些正确的排列方法。因此,使用交换法解全排列问题时,不可打乱递归调用时的排列。

题N-Queens被AC的代码:

class Solution {
public:
vector<vector<string> > solveNQueens(int n) {
if(n <= ) return res;
int* A = new int[n];
for(int i = ; i < n; ++i) A[i] = i;
nqueensCore(A, , n);
return res;
}
private:
vector<vector<string> > res;
void nqueensCore(int A[], int start, int n){
if((start+) == n && judgeAttackDiag(A, start))
output(A, n);
else{
for(int i = start; i < n; ++i){
swtich(A, start, i);
if(judgeAttackDiag(A, start))
nqueensCore(A, start+, n);
swtich(A, start, i);
}
}
} void swtich(int A[], int left, int right){
int temp = A[left];
A[left] = A[right];
A[right] = temp;
} bool judgeAttackDiag(int A[], int newPlace){    //everytime a new place is configured out, judge if it can be attacked by the existing queens
if(newPlace <= ) return true;
bool canAttack = false;
for(int i = ; i < newPlace; ++i){
if((newPlace - i) == (A[newPlace] - A[i]) || (i - newPlace) == (A[newPlace] - A[i])) canAttack = true;
}
return !canAttack;
} void output(int A[], int n){
vector<string> v;
for(int i = ; i < n; ++i){
string row(n,'.');
v.push_back(row);
}
for(int j = ; j < n; ++j){
v[A[j]][j] = 'Q';
}
res.push_back(v);
}
};

N-Queens II

Follow up for N-Queens problem.

Now, instead outputting board configurations, return the total number of distinct solutions.

class Solution {
public:
int totalNQueens(int n) {
}
};

基本思路依然是使用全排列,这次代码可以写得简洁一些。

class Solution {
public:
int totalNQueens(int n) {
if(n <= ) return n;
res = ;
queens = new int[n];
for(int i = ; i < n; queens[i] = i, ++i);
nQueensCore(queens, n, );
return res;
}
private:
int res;
int* queens;
void nQueensCore(int* queens, int n, int st){
if(st == n) ++res;
int tmp, i, j;
for(i = st; i < n; ++i){
tmp = queens[st];
queens[st] = queens[i];
queens[i] = tmp; for(j = ; j < st; ++j){
if(abs(queens[st] - queens[j]) == abs(st - j)) break;
}
if(j == st) nQueensCore(queens, n, st+); tmp = queens[st];
queens[st] = queens[i];
queens[i] = tmp;
}
}
};

我第一次提交时依然犯了忘掉switch back的错误,第一次提交的代码中,写的是“if(abs(queens[st] - queens[j]) == abs(st - j)) return;"

这样就导致了switch back部分代码(高亮部分)不会被执行,从而打乱了整个顺序。

3. 数独问题

数独和N 皇后一样,都是需要不停地计算当前位置上所摆放的数字是否满足条件,不满足就回溯,摆放另一个数字,基于这个新数字再计算。

选择新数字的过程,就是全排列的过程。

以LeetCode上的例题为例:

Write a program to solve a Sudoku puzzle by filling the empty cells.

Empty cells are indicated by the character '.'.

You may assume that there will be only one unique solution.

A sudoku puzzle...

...and its solution numbers marked in red.

void solveSudoku(vector<vector<char> > &board) {}

关于数独的规则,请参见这里:Sudoku Puzzles - The Rules. 必须保证每行,每列,和9个3X3方块中1-9各自都只出现一次。

我们依然可以用交换法来解,思路依然是:

  for(i = start to end),循环中: swap (第start个和第i个);如果当前排列正确,递归调用(start+1);swap back

这里需要额外考虑的是:数独阵列中有一些固有数字,这些数字是一开始就不能动。因此,我用flag[][]来标记一个位置上的数字是否可替换。flag[i][j] == true表示Board[i][j]上的数字可替换,false表示不可替换。因此思路稍加变更,成了:

Func(start){

a. 如果 flag上start对应的位置 == false,说明当前位不能改动,因此只需判断当前排列是否正确,正确则递归调用(start+1)

b. flag上start对应的位置 = false

c. for(i = start 到当前行末尾),循环中: swap (第start个和第i个);如果当前排列正确,递归调用(start+1);swap back

d. flag上start对应的位置 = true

}

代码:

class Solution {
public:
void solveSudoku(vector<vector<char> > &board) {
flag = new bool*[]; //flag[i][j] == false means value on board[i][j] is decided or originally given.
digits = new bool[]; //digits is used to check whether one digit (1-9) is duplicated in sub 3*3 square
int i = , j = ;
for(; i < ; ++i){
flag[i] = new bool[];
for(j = ; j < ; ++j){
if(board[i][j] == '.') flag[i][j] = true;
else flag[i][j] = false;
}
}
initialBoard(board, ); //初始化Board,先把所有的空缺填满,填的时候先保证每一行没有重复数字。
solveSudokuCore(board, );
}
private:
bool **flag;
bool *digits;
void initialBoard(vector<vector<char> > &board, int N){
int i, j, k;
bool *op = new bool[N+];
for(i = ; i < N; ++i){
for(j = ; j <= N; ++j) op[j] = false;
for(j = ; j < N; ++j){
if(board[i][j] != '.') op[board[i][j] - ''] = true;
}
for(j = , k = ; j < N; ++j){
if(board[i][j] == '.'){
while(op[k++]);
board[i][j] = ((k-) + '');
}
}
}
delete op;
} bool check(vector<vector<char> > &board, int index){
int col = index%, row = index/;
int i = ;
for(i = ; i < ; ++i){
if(i != row && !flag[i][col] && board[i][col] == board[row][col])
return false;
} if((col+)% == && (row+)% == ){
for(i = ; i < ; ++i) digits[i] = false;
for(int j = (row/)*; j < (row/+)*; ++j){
for(int k = (col/)*; k < (col/+)*; ++k){
if(digits[board[j][k] - '']) return false;
digits[board[j][k] - ''] = true;
}
}
}
return true;
} bool solveSudokuCore(vector<vector<char> > &board, int index){
if(index == ) return true;
if(!flag[index/][index%]){ //如果当前位置是不可更改的,那么只要check一下是否正确就可以了
if(check(board, index) && solveSudokuCore(board, index+))
return true;
}else{ //如果当前位置是可更改的,那么需要通过交换不停替换当前位,看哪一个数字放在当前位上是正确的。
flag[index/][index%] = false;
for(int i = index; i < (index/+)*; ++i){
if(flag[i/][i%] || i == index){
int tmp = board[i/][i%];
board[i/][i%] = board[index/][index%];
board[index/][index%] = tmp; if(check(board, index) && solveSudokuCore(board, index+))
return true; //如果当前位上放这个数字正确,那么继续计算下一位上该放哪个数字。 tmp = board[i/][i%];
board[i/][i%] = board[index/][index%];
board[index/][index%] = tmp;
}
}
flag[index/][index%] = true;
}
return false;
}
};

四、引申

给定一个包含重复元素的序列,生成其全排列

如果要生成全排列的序列中包含重复元素,该如何做呢?以LeetCode上的题 Permutations II 为例:

Given a collection of numbers that might contain duplicates, return all possible unique permutations.

For example,
[1,1,2] have the following unique permutations:
[1,1,2][1,2,1], and [2,1,1].

class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
}
};

思路:

比如[1, 1, 2, 2],我们交换过一次 位置1上的"1"和 位置3上的"2",就不再需要交换 位置1上的"1" 和 位置4上的"2"了。

因此,在传统的交换法的基础上,需要加一个过滤:比如当前我们 需要挨个将位置 2-4的元素和位置1上的"1" 交换,此时,如果2-4上的元素有重复值,我们只需要用第一次出现的那个值和位置1做交换即可。

我开始的思路是:先将位置2-4的元素sort一下,然后定义pre存放上次交换的元素的值,如果当前值和pre不同,则交换当前值和位置1上的值。

按照这种方式实现的代码是:

class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
if(num.size() == ) return res;
permuteCore(num, );
return res;
}
private:
vector<vector<int> > res;
void permuteCore(vector<int> &num, int start){
if(start == num.size()){
vector<int> v;
for(vector<int>::iterator i = num.begin(); i < num.end(); ++i){
v.push_back(*i);
}
res.push_back(v);
}
sort(num.begin()+start, num.end());
int pre;
for(int i = start; i < num.size(); ++i){
if(i == start || pre != num[i]){
swap(num, start, i);
permuteCore(num, start+);
swap(num, start, i);
pre = num[i];
}
}
}
void swap(vector<int> &num, int left, int right){
int tmp = num[left];
num[left] = num[right];
num[right] = tmp;
}
};

然而判定结果是 Output Limit Exceeded,分析了一下原因,在于Sort破坏了当前子排列,导致出现了重复解。正如我上一节中所说,使用交换法解全排列问题时,不可打乱递归调用时的排列,不然可能导致重复解。

不用sort来做判断的话,那就使用set 来去重吧。将上面代码的高亮部分换成下面代码的高亮部分,这次就AC了。

class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
if(num.size() == ) return res;
permuteCore(num, );
return res;
}
private:
vector<vector<int> > res; void permuteCore(vector<int> &num, int start){
if(start == num.size()){
vector<int> v;
for(vector<int>::iterator i = num.begin(); i < num.end(); ++i){
v.push_back(*i);
}
res.push_back(v);
}
set<int> used;
for(int i = start; i < num.size(); ++i){
if(used.find(num[i]) == used.end()){
swap(num, start, i);
permuteCore(num, start+);
swap(num, start, i);
used.insert(num[i]);
}
}
}
void swap(vector<int> &num, int left, int right){
int tmp = num[left];
num[left] = num[right];
num[right] = tmp;
}
};

但这种解法的缺点在于比较费空间,set 需要定义在局部变量区,这样才能保证递归函数不混用set。

五、总结:

对于全排列问题,交换法是一种比较基本的方法,其优点就在于不需要额外的空间

使用时需要注意

a. 不要打乱子问题的序列顺序。

b. 记得换回来,回溯才能正确进行,也就是说,负责switch back部分的代码必须被执行到。

[LeetCode] “全排列”问题系列(一) - 用交换元素法生成全排列及其应用,例题: Permutations I 和 II, N-Queens I 和 II,数独问题的更多相关文章

  1. “全排列”问题系列(一)[LeetCode] - 用交换元素法生成全排列及其应用,例题: Permutations I 和 II, N-Queens I 和 II,数独问题

    转:http://www.cnblogs.com/felixfang/p/3705754.html 一.开篇 Permutation,排列问题.这篇博文以几道LeetCode的题目和引用剑指offer ...

  2. [LeetCode] “全排列”问题系列(二) - 基于全排列本身的问题,例题: Next Permutation , Permutation Sequence

    一.开篇 既上一篇<交换法生成全排列及其应用> 后,这里讲的是基于全排列 (Permutation)本身的一些问题,包括:求下一个全排列(Next Permutation):求指定位置的全 ...

  3. LeetCode 31:递归、回溯、八皇后、全排列一篇文章全讲清楚

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天我们讲的是LeetCode的31题,这是一道非常经典的问题,经常会在面试当中遇到.在今天的文章当中除了关于题目的分析和解答之外,我们还会 ...

  4. LeetCode47, 全排列进阶,如果有重复元素怎么办?

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode第28篇,依然是全排列的问题. 如果对全排列不熟悉或者是最近关注的同学可以看一下上一篇文章: LeetCode46 回 ...

  5. C# 刷遍 Leetcode 面试题系列连载(3): No.728 - 自除数

    前文传送门: C#刷遍Leetcode面试题系列连载(1) - 入门与工具简介 C#刷遍Leetcode面试题系列连载(2): No.38 - 报数 系列教程索引 传送门:https://enjoy2 ...

  6. 图解Leetcode组合总和系列——回溯(剪枝优化)+动态规划

    Leetcode组合总和系列--回溯(剪枝优化)+动态规划 组合总和 I 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 ...

  7. LeetCode:最少移动次数使得数组元素相等||【462】

    LeetCode:最少移动次数使得数组元素相等||[462] 题目描述 给定一个非空整数数组,找到使所有数组元素相等所需的最小移动数,其中每次移动可将选定的一个元素加1或减1. 您可以假设数组的长度最 ...

  8. C#刷遍Leetcode面试题系列连载(1) - 入门与工具简介

    目录 为什么要刷LeetCode 刷LeetCode有哪些好处? LeetCode vs 传统的 OJ LeetCode刷题时的心态建设 C#如何刷遍LeetCode 选项1: VS本地Debug + ...

  9. C#刷遍Leetcode面试题系列连载(2): No.38 - 报数

    目录 前言 题目描述 相关话题 相似题目 解题思路: 运行结果: 代码要点: 参考资料: 文末彩蛋 前言 前文传送门: C# 刷遍 Leetcode 面试题系列连载(1) - 入门与工具简介 上篇文章 ...

随机推荐

  1. ECharts模块化使用5分钟上手

    什么是EChats? 一句话: 一个数据可视化(图表)Javascript框架,详细?移步这里,类似(推荐)的有 HighCharts,其他? 嗯,先看看吧-- 快速上手: 模块化单文件引入(推荐). ...

  2. “Hello World!”团队第七次Scrum立会

    "Hello world!"团队召开第七次Scrum立会.博客内容: 1.会议时间 2.会议成员 3.会议地点 4.会议内容 5.Todo list 6.会议照片 7.燃尽图 一. ...

  3. Unicode 和 UTF-8 有何区别

    作者:于洋链接:https://www.zhihu.com/question/23374078/answer/69732605来源:知乎著作权归作者所有,转载请联系作者获得授权. ========== ...

  4. DP---基本思想 具体实现 经典题目 POJ1160 POJ1037

    POJ1160, post office.动态规划的经典题目.呃,又是经典题目,DP部分的经典题目怎就这么多.木有办法,事实就这样. 求:在村庄内建邮局,要使村庄到邮局的距离和最小. 设有m个村庄,分 ...

  5. HDU 5172 GTY's gay friends 线段树+前缀和+全排列

    题目链接: hdu: http://acm.hdu.edu.cn/showproblem.php?pid=5172 bc(中文):http://bestcoder.hdu.edu.cn/contest ...

  6. 使用 virt-install 创建虚拟机

    使用 virt-install 创建虚拟机 virt-install --help 使用 qemu-kvm 创建虚拟机 介绍 1:命令路径:/usr/libexec/qemu-kvm   2:添加至环 ...

  7. 2."结对项目"的心得体会

    上个星期,老师给我们布置了个课堂小作业:   某公司程序员二柱的小孩上了小学二年级,老师让家长每天出30道(100以内)四则运算题目给小学生做.二柱立马就想到写一个小程序来做这件事. 这个事情可以用很 ...

  8. Java实现的词频统计——单元测试

    前言:本次测试过程中发现了几个未知字符,这里将其转化为十六进制码对其加以区分. 1)保存统计结果的Result文件中显示如图: 2)将其复制到eclipse环境下的切分方法StringTokenize ...

  9. Django之ORM其他骚操作

    Django ORM执行原生SQL # extra # 在QuerySet的基础上继续执行子语句 # extra(self, select=None, where=None, params=None, ...

  10. BZOJ 1835 基站选址(DP+线段树)

    # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...