816D.Karen and Test 杨辉三角 规律 组合
题意:给出n个数,每个数对间进行加或减,结果作为下一层的数,问最后的值为多少
思路:首先我们发现很像杨辉三角,然后考虑如何计算每个数对结果的贡献值,找规律可以发现当数的个数为偶数时,其所在层表达式即为二项式定理,且其中的数下标差都为2,故倒数第二层就是将第一层的数分为系数相同的两组,最后相减或相加。注意取模问题,使用逆元。注意n<=2的特殊情况
/** @Date : 2017-07-01 13:43:26
* @FileName: 816D 组合 杨辉三角.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 2e5+20;
const double eps = 1e-8;
const LL mod = 1e9 + 7; int n;
LL a[N];
LL fac[N], Inv[N];
LL fpow(LL a, int n)
{
LL res = 1;
while(n > 0)
{
if(n & 1)
res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
void init()
{
fac[1] = Inv[1] = 1;
for(LL i = 2; i <= n; i++)
{
fac[i] = fac[i - 1] * i % mod;
Inv[i] = (mod - mod / i) * Inv[mod % i] % mod;
}
for(int i = 2; i <= n; i++)
{
Inv[i] = (Inv[i] * Inv[i - 1]) % mod;
}
} LL C(LL n, LL k)
{
if(k == 0 || n == k)
return 1LL;
else return (fac[n] * Inv[k] % mod) * Inv[n - k] % mod;
} int main()
{
while(cin >> n)
{
init();
MMF(a);
LL ans = 0;
for(int i = 0; i < n; i++) scanf("%lld", a + i); if(n % 2)
{
n--;
LL f = 1;
for(int i = 0; i < n; i++)
{
a[i] = (a[i] + a[i + 1] * f) % mod;
f *= -1;
}
}
for(int i = 0; i < n; i+=2)
{
ans = (ans + (a[i] + a[i + 1]*(n%4?1:-1) ) * C(n/2 - 1, i/2) % mod) % mod;
//printf("%lld~%lld\n", a[i]*C(n/2 - 1, i/2), a[i+1]*C(n/2 - 1, i/2));
}
if(ans < 0)
ans = (ans + mod) % mod;
if(n <= 2)//小于2的特殊情况
printf("%lld\n", (a[0] + a[1]) % mod);
else
printf("%lld\n", ans % mod); }
return 0;
}
816D.Karen and Test 杨辉三角 规律 组合的更多相关文章
- java编写杨辉三角
import java.util.Scanner; /* *计算杨辉三角: * 规律:两边都是1 * 从第三行开始,上一行的前一个元素+与其并排的元素等于下面的元素 * 例如: * 1 * 11 * ...
- HDOJ(HDU) 1799 循环多少次?(另类杨辉三角)
Problem Description 我们知道,在编程中,我们时常需要考虑到时间复杂度,特别是对于循环的部分.例如, 如果代码中出现 for(i=1;i<=n;i++) OP ; 那么做了n次 ...
- 基于visual Studio2013解决C语言竞赛题之0509杨辉三角
题目
- 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题
51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...
- Java数组的应用:案例:杨辉三角,三维数组,字符串数组
//import java.util.Arrays; //包含Arrays //import java.util.Random; public class HelloWorld { public st ...
- Java_基础篇(杨辉三角)
对于刚刚学Java的同学来说,杨辉三角是一个很好的例子. 杨辉三角让初学者更好的理解数组的定义和更好地去运用数组,特别是二维数组. 除此之外,还让初学者更好的掌握嵌套语句的使用. 以下是我的杨辉三角J ...
- 廖雪峰老师博客学习《通过生成器generator生成列表式杨辉三角》
说明:这是我接触生成器概念后,自己对它的理解,可能比较表面,没深入理解,也可能有错误.后续校正错误认知,将有关generator作为一个tag了! 希望以后能活用. 先贴出自己写的triangles( ...
- [Java练习题] -- 1. 使用java打印杨辉三角
package cn.fzm.demo1.array; import java.util.Scanner; /* * 需求:打印杨辉三角形(行数可以键盘录入) 1 1 1 1 2 1 1 3 3 1 ...
- 算法基础_递归_求杨辉三角第m行第n个数字
问题描述: 算法基础_递归_求杨辉三角第m行第n个数字(m,n都从0开始) 解题源代码(这里打印出的是杨辉三角某一层的所有数字,没用大数,所以有上限,这里只写基本逻辑,要符合题意的话,把循环去掉就好) ...
随机推荐
- 探路者 Alpha阶段中间产物
版本控制 git地址:https://git.coding.net/clairewyd/toReadSnake.git 贪吃蛇(单词版)软件功能说明书 1 开发背景 “贪吃蛇”这个游戏对于80, ...
- IDEA + SSH OA 第一天(IDEA 文件夹类型了解)
回顾一下 IDEA 的文件夹的类型 设置文件夹方法 或者点击右上角的 文件夹的类型选择:可通过,右键文件夹,选择你要的类型: Sources Root : 源码的目录 Resources Root:源 ...
- Java单例模式&static成员变量 区别
当需要共享的变量很多时,使用static变量占用内存的时间过长,在类的整个生命周期. 而对象只是存在于对象的整个生命周期. //饿汉式 class Single//类一加载,对象就已经存在了. { ...
- 使用fprof基本步骤
$erl -name a@localhost -setcookie abc -remsh b@localhost >fprof:trace([start, {file, "/home/ ...
- arp请求与回复
实验环境:wifi 1,手机192.168.1.103 2,电脑192.168.1.106 先删除电脑arp表数据 ping request: reply:
- XHTML5 与 HTML 4.01的差异
在 HTML 4.01 中,td 元素的 "bgcolor"."height"."width" 以及 "nowrap" ...
- TDDL调研笔记
一,TDDL是什么 Taobao Distributed Data Layer,即淘宝分布式数据层,简称TDDL .它是一套分布式数据访问引擎 淘宝一个基于客户端的数据库中间件产品 基于JDBC规范, ...
- 【UNIX环境编程、操作系统】孤儿进程和僵尸进程
基本概念: 在类UNIX系统中,僵尸进程是指完成执行(通过exit系统调用,或运行时发生致命错误或收到终止信号所致)但在操作系统的进程表中仍然有一个进程表表项(进程控制块PCB),处于"终止 ...
- hive表信息查询:查看表结构、表操作等--转
原文地址:http://www.aboutyun.com/forum.PHP?mod=viewthread&tid=8590&highlight=Hive 问题导读:1.如何查看hiv ...
- 【bzoj3203】[Sdoi2013]保护出题人 凸包+二分
题目描述 输入 第一行两个空格隔开的正整数n和d,分别表示关数和相邻僵尸间的距离.接下来n行每行两个空格隔开的正整数,第i + 1行为Ai和 Xi,分别表示相比上一关在僵尸队列排头增加血量为Ai 点的 ...