D. Fools and Foolproof Roads
 

You must have heard all about the Foolland on your Geography lessons. Specifically, you must know that federal structure of this country has been the same for many centuries. The country consists of n cities, some pairs of cities are connected by bidirectional roads, each road is described by its length li.

The fools lived in their land joyfully, but a recent revolution changed the king. Now the king is Vasily the Bear. Vasily divided the country cities into regions, so that any two cities of the same region have a path along the roads between them and any two cities of different regions don't have such path. Then Vasily decided to upgrade the road network and construct exactly p new roads in the country. Constructing a road goes like this:

  1. We choose a pair of distinct cities uv that will be connected by a new road (at that, it is possible that there already is a road between these cities).
  2. We define the length of the new road: if cities uv belong to distinct regions, then the length is calculated as min(109, S + 1) (S — the total length of all roads that exist in the linked regions), otherwise we assume that the length equals 1000.
  3. We build a road of the specified length between the chosen cities. If the new road connects two distinct regions, after construction of the road these regions are combined into one new region.

Vasily wants the road constructing process to result in the country that consists exactly of q regions. Your task is to come up with such road constructing plan for Vasily that it meets the requirement and minimizes the total length of the built roads.

Input

The first line contains four integers n (1 ≤ n ≤ 105), m (0 ≤ m ≤ 105), p (0 ≤ p ≤ 105), q (1 ≤ q ≤ n) — the number of cities in the Foolland, the number of existing roads, the number of roads that are planned to construct and the required number of regions.

Next m lines describe the roads that exist by the moment upgrading of the roads begun. Each of these lines contains three integers xi,yilixiyi — the numbers of the cities connected by this road (1 ≤ xi, yi ≤ n, xi ≠ yi), li — length of the road (1 ≤ li ≤ 109). Note that one pair of cities can be connected with multiple roads.

Output

If constructing the roads in the required way is impossible, print a single string "NO" (without the quotes). Otherwise, in the first line print word "YES" (without the quotes), and in the next p lines print the road construction plan. Each line of the plan must consist of two distinct integers, giving the numbers of the cities connected by a road. The road must occur in the plan in the order they need to be constructed. If there are multiple optimal solutions, you can print any of them.

Examples
input
9 6 2 2
1 2 2
3 2 1
4 6 20
1 3 8
7 8 3
5 7 2
output
YES
9 5
1 9
Note

Consider the first sample. Before the reform the Foolland consists of four regions. The first region includes cities 1, 2, 3, the second region has cities 4 and 6, the third region has cities 5, 7, 8, the fourth region has city 9. The total length of the roads in these cities is11, 20, 5 and 0, correspondingly. According to the plan, we first build the road of length 6 between cities 5 and 9, then the road of length 23 between cities 1 and 9. Thus, the total length of the built roads equals 29.

题意:

  给你n点m边的无向图;

  你可以加入p条任意边,而使得新图是由q个联通快构成的无向图

  加边规则如下;

    你可以选择两个不同点 相连,无论原来他们是否有边

    你可以选择两个不同点相连,如果他们是不属于同一个联通快,那么新加入的边 的边权必须为 min(1e9,S+1),S表示 这两个联通快的 总边权和

    如果他们属于一个联通快,那么新加入的边 边权必须 为1000

    相连之后,就属于一个联通快了

  是否有方案构成q块

  并且使得新加边的总边权最小

题解:

  并查集维护联通快与边权和

  优先队列每次选择联通快和最小的两个相连

  最后多余的边都连在同样的两个点上就好了

#include<bits/stdc++.h>
#include<queue>
using namespace std;
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 3e5+, M = 2e5++, mod = 1e9+, inf = 0x3fffffff; int n,m,p,q,edges[N],fa[N],num[N],a[N],vis[N];
vector<pii > ans;
LL sum[N];
int finds(int x) {return fa[x] == x? x:fa[x]=finds(fa[x]);}
struct node{LL value;int id;
bool operator < (const node &r) const
{
return value > r.value;
}
};
int main() {
scanf("%d%d%d%d",&n,&m,&p,&q);
for(int i = ; i <= n; ++i) fa[i] = i,sum[i] = , num[i] = ;
for(int i = ; i <= m; ++i) {
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
int fx = finds(u);
int fy = finds(v);
sum[fx] += w;
if(fx!=fy) {
num[fx] += num[fy];
fa[fy] = fx;
sum[fx] += sum[fy];
}
}
priority_queue<node> Q;
int block = ;
for(int i = ; i <= n; ++i) {
int fx = finds(i);
if(!vis[fx]) {
Q.push(node{sum[fx],fx});
// cout<<sum[fx]<<" "<<fx<<endl;
block++;
vis[fx] = ;
}
}
block = block - q;
if(block < ) {
puts("NO");
return ;
}
while(!Q.empty() && block--) {
node k = Q.top();
Q.pop();
if(Q.empty()) {break;}
node k2 = Q.top();
Q.pop();
// cout<<k.id<<" "<<k2.id<<endl;
ans.push_back(MP(k.id,k2.id));
num[k.id] += num[k2.id];
fa[k2.id] = fa[k.id];
Q.push(node{k.value+k2.value+min(1000000000LL,k.value+k2.value+),k.id});
p--;
}
if(p < ) {
puts("NO");
return ;
}
if(p) {
int flag = -;
for(int i = ; i <= n; ++i) {
int fx = finds(i);
if(num[fx]>) {
flag = fx;
// cout<<fx<<endl;
break;
}
} for(int cnt = ,i = ; i <= n; ++i) {
if(finds(i) == flag) {
a[++cnt] = i;
}
if(cnt == ) break;
}
if(flag == -) {
puts("NO");return ;
}
while(p--) {
ans.push_back(MP(a[],a[]));
}
}
puts("YES");
for(int i = ; i < ans.size(); ++i) cout<<ans[i].first<<" "<<ans[i].second<<endl;
return ;
}

  

Codeforces Round #212 (Div. 2) D. Fools and Foolproof Roads 并查集+优先队列的更多相关文章

  1. Codeforces Round #396 (Div. 2) D. Mahmoud and a Dictionary 并查集

    D. Mahmoud and a Dictionary 题目连接: http://codeforces.com/contest/766/problem/D Description Mahmoud wa ...

  2. Codeforces Round #250 (Div. 1) B. The Child and Zoo 并查集

    B. The Child and Zoo Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/438/ ...

  3. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 暴力并查集

    D. Dividing Kingdom II 题目连接: http://www.codeforces.com/contest/687/problem/D Description Long time a ...

  4. Codeforces Round #376 (Div. 2) A B C 水 模拟 并查集

    A. Night at the Museum time limit per test 1 second memory limit per test 256 megabytes input standa ...

  5. Codeforces Round #254 (Div. 2) B. DZY Loves Chemistry (并查集)

    题目链接 昨天晚上没有做出来,刚看题目的时候还把题意理解错了,当时想着以什么样的顺序倒,想着就饶进去了, 也被题目下面的示例分析给误导了. 题意: 有1-n种化学药剂  总共有m对试剂能反应,按不同的 ...

  6. Codeforces Round #260 (Div. 1) C. Civilization 树的中心+并查集

    题目链接: 题目 C. Civilization time limit per test1 second memory limit per test256 megabytes inputstandar ...

  7. Codeforces Round #385 (Div. 2)A B C 模拟 水 并查集

    A. Hongcow Learns the Cyclic Shift time limit per test 2 seconds memory limit per test 256 megabytes ...

  8. Codeforces Round #250 (Div. 2) D. The Child and Zoo 并查集

    D. The Child and Zoo time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  9. Codeforces Round #329 (Div. 2) D. Happy Tree Party(LCA+并查集)

    题目链接 题意:就是给你一颗这样的树,用一个$y$来除以两点之间每条边的权值,比如$3->7$,问最后的y的是多少,修改操作是把权值变成更小的. 这个$(y<=10^{18})$除的权值如 ...

随机推荐

  1. 一步步搭建docker私有仓库并从私有仓库中下载镜像

    一步步搭建docker私有仓库 #下载镜像 docker pull registry#查看镜像 docker images #运行私有仓库,指定端口和数据卷 docker run -d -p : -v ...

  2. 在linux环境编译boost

    1.在boost官网:http://www.boost.org/下载相应版本的boost 2.解压boost到相应目录,在boost跟目录下有b2可执行程序,可以通过输入命令“/b2 --help”, ...

  3. vSphere Client无法连接到服务器 出现未知错误的解决方法

    VMware ESXi服务器虚拟机在正常使用过程中,有时候会突然出现远程连接不上的问题,那么这个时候使用vSphere Client连接会出现如下错误: 虽然连接不上,但是可以ping通,所以分析有可 ...

  4. Python字符编码

    http://www.runoob.com/python/python-strings.html ASCII Unicode UTF-8 # -*- coding: utf-8 -*- 格式化 %运算 ...

  5. ABAP 内表的行列转换-发货通知单-打印到Excel里-NEW

    *********************************************************************** * Title           : ZSDF002  ...

  6. SuperIndicator 专做轮播图库,没有之一,支持轮播图无限循环

    github地址:https://github.com/hejunlin2013/SuperIndicator SuperIndicator a superindicatorlibray for vi ...

  7. 【python】mysqlDB转xml中的编码问题

    背景:有mysql数据库,将数据从数据库中读取,并存储到xml中 采用了MySQLdb和lxml两个库 具体编码处理过程如下: . 指定mysql的编码方式 .取数据库data->判断data类 ...

  8. java操作数据库出错

    "无效的列索引"其实是个低级的错误 出错原因:1.sql串的?号数目和提供的变量数目不一致:例如:jdbcTemplate.update(sql, new Object[] {ne ...

  9. dropdownlist 动态添加

    this.DropDownList1.Items.Insert(0,new ListItem("",""));                this.Drop ...

  10. 多线程编程1 - NSThread

    每个iOS应用程序都有个专门用来更新显示UI界面.处理用户的触摸事件的主线程,因此不能将其他太耗时的操作放在主线程中执行,不然会造成主线程堵塞(出现卡机现象),带来极坏的用户体验.一般的解决方案就是将 ...