http://poj.org/problem?id=3264 (题目链接)

题意

  给出序列,求区间最大值-最小值

Solution

  无修改,询问较多,ST表水一发。

ST算法(Sparse Table):

  它是一种动态规划的方法。以最小值为例。a为所寻找的数组,用一个二维数组 f(i,j) 记录区间 [i,i+2^j-1] 区间中的最小值。其中 f[i,0] = a[i] ; 所以,对于任意的一组 (i,j),f(i,j) = min{ f(i,j-1),f(i+2^(j-1),j-1)} 来使用动态规划计算出来。

  这个算法的高明之处不是在于这个动态规划的建立,而是它的查询:它的查询效率是O(1)!如果不细想的话,怎么弄也是不会想到有O(1)的算法的。

  假设我们要求区间[m,n]中a的最小值,找到一个数k使得2^k<n-m+1,即k=[ln(b-a+1)/ln(2)] 这样,可以把这个区间分成两个部分:[m,m+2^k-1]和[n-2^k+1,n]!我们发现,这两个区间是已经初始化好的!前面的区间是f(m,k),后面的区间是f(n-2^k+1,k)!这样,只要看这两个区间的最小值,就可以知道整个区间的最小值!

代码

// poj3264
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=50010;
int bin[30],a[maxn],mn[maxn][30],mx[maxn][30];
int n,m; void build() {
for (int i=1;i<=n;i++) mx[i][0]=mn[i][0]=a[i];
for (int j=1;j<=20;j++)
for (int i=1;i+bin[j]<=n+1;i++)
mn[i][j]=min(mn[i][j-1],mn[i+bin[j-1]][j-1]);
for (int j=1;j<=20;j++)
for (int i=1;i+bin[j]<=n+1;i++)
mx[i][j]=max(mx[i][j-1],mx[i+bin[j-1]][j-1]);
}
int query(int l,int r) {
int x=log(r-l+1)/log(2);
int a=max(mx[l][x],mx[r-bin[x]+1][x]);
int b=min(mn[l][x],mn[r-bin[x]+1][x]);
return a-b;
}
int main() {
bin[0]=1;for (int i=1;i<=20;i++) bin[i]=bin[i-1]<<1;
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
build();
for (int x,y,i=1;i<=m;i++) {
scanf("%d%d",&x,&y);
printf("%d\n",query(x,y));
}
return 0;
}

  

【poj3264】 Balanced Lineup的更多相关文章

  1. 【POJ3264】Balanced Lineup(RMQ)

    题意:每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. 有一天, John 决定让一些牛们玩一场飞盘比赛. 他准备找一群在对列中为置连续的牛来进行比赛 ...

  2. 【USACO】 Balanced Lineup

    [题目链接] 点击打开链接 [算法] 这是一道经典的最值查询(RMQ)问题. 我们首先想到线段树.但有没有更快的方法呢?对于这类问题,我们可以用ST表(稀疏表)算法求解. 稀疏表算法.其实也是一种动态 ...

  3. 【LeetCode】Balanced Binary Tree 解题报告

    [题目] Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced bi ...

  4. 【USACO】 Balanced Photo

    [题目链接] 点击打开链接 [算法] 树状数组 [代码] #include<bits/stdc++.h> using namespace std; int i,N,ans,l1,l2; ] ...

  5. 【leetcode】Balanced Binary Tree(middle)

    Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...

  6. 【LeetCode】Balanced Binary Tree 算法优化 解题报告

    Balanced Binary Tree Better Solution [LeetCode] https://leetcode.com/submissions/detail/40087813/ To ...

  7. 【HDOJ】【3709】Balanced Bumber

    数位DP 题解:http://www.cnblogs.com/algorithms/archive/2012/09/02/2667637.html dfs的地方没太看懂……(也就那里是重点吧喂!)挖个 ...

  8. 【hdu3709】 Balanced Number

    http://acm.hdu.edu.cn/showproblem.php?pid=3709 (题目链接) 题意 求范围${[a,b]}$之间的平衡数的个数,所谓平衡数就是以某一位为支点,两侧的力矩相 ...

  9. POJ3264:Balanced Lineup——题解+st表解释

    我早期在csdn的博客之一,正好复习st表就拿过来.http://write.blog.csdn.net/mdeditor#!postId=63713810 这道题其实本身不难(前提是你得掌握线段树或 ...

随机推荐

  1. 上传Text文档并转换为PDF(解决乱码)

    前些日子,Insus.NET有分享一篇<上传Text文档并转换为PDF>http://www.cnblogs.com/insus/p/4313092.html 它是按最简单与默认方式来处理 ...

  2. salt yum安装lamp

    在批量安装软件前,先找台测试机yum装一遍,看是否报错等,是否依赖包全等 .         本次我们在dev环境下搞. 先看一下已搞成功的目录结构         定义dev环境的第二个好处     ...

  3. Mininet的内部实现原理简介

    原文发表在我的博客主页,转载请注明出处. 前言 之前模拟仿真网络一直用的是Mininet,包括写了一些关于Mininet安装,和真实网络相连接,Mininet简历拓扑的博客,但是大多数都是局限于具体步 ...

  4. 深入grootJs(进阶教程)

    深入grootJs 这篇教程的原则是把grootJs原理讲透,主要真正理解了原理才能用起来随心所欲 mvvm模式简介 grootJs的vm结构 扫描函数sweep 垃圾回收的原理 加载器中的预编 ,控 ...

  5. 【NDK开发】android-ndk r10环境搭建

    1)打开Android开发者的官网http://developer.android.com/找到Develop点击.如果页面打不开,通过代理来访问. 2)进入后再点击Tools 3)进入后在左侧找到N ...

  6. 基于nodejs的终端天气查询

    国际惯例,先上效果图 前天,突然想到,怎么直接在命令行查询天气呢?好的,那就写一个吧.然后就开始找城市.天气的api接口,最终做出来这么一个东西. 安装方法:$ npm install tianqi ...

  7. 使用Python 将shapefile导入mongodb

    使用Python 将shapefile导入mongodb 随着big data时代的到来,各个行业都在考虑能不能把big data的思路.方法引入进来,GIS行业也不能免俗. 下面就介绍一下如何将sh ...

  8. ArcEngine将线符号化为立方体状

    对于二三维同步中的三维视图肯定是需要通过二维元素来符号化成三维元素的,之前项目测试临时采用这个自代的圆管状: esriSimple3DLineStyle AxisStyle = esriSimple3 ...

  9. [POJ3696]The Luckiest number(数论)

    题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...

  10. Linux C中结构体初始化

          在阅读GNU/Linux内核代码时,我们会遇到一种特殊的结构初始化方式.该方式是某些C教材(如谭二版.K&R二版)中没有介绍过的.这种方式称为指定初始化(designated in ...