poj 3255 Roadblocks
Roadblocks
|
Time Limit: 2000MS |
Memory Limit: 65536K |
|
|
Total Submissions: 13216 |
Accepted: 4660 |
Description
Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.
The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersectionN.
The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).
Input
Line 1: Two space-separated integers: N and R
Lines 2..R+1: Each line contains three space-separated integers: A, B,
and D that
describe a road that connects intersections A and B and
has length D (1
≤ D ≤
5000)
Output
Line 1: The length of
the second shortest path between node 1 and node N
Sample Input
4 4
1 2 100
2 4 200
2 3 250
3 4 100
Sample Output
450
Hint
Two routes: 1 -> 2 ->
4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)
Source
题意:
给出n个点,m条双向边,求严格次短路。
AC代码:
#include<cstdio>
#include<cstring>
#include<queue>
#define R register
using namespace std;
inline int read(){
R int x=;bool f=;
R char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return f?x:-x;
}
const int N=1e5+;
struct node{
int u,v,w,next;
}e[N<<];
int n,m,tot,head[N],dis1[N],dis2[N];
bool vis[N];
void add(int x,int y,int z){
e[++tot].u=x;
e[tot].v=y;
e[tot].w=z;
e[tot].next=head[x];
head[x]=tot;
}
void spfa1(int S){
queue<int>q;
memset(vis,,sizeof vis);
memset(dis1,/,sizeof dis1);
q.push(S);
dis1[S]=;vis[S]=;
while(!q.empty()){
int x=q.front();q.pop();
vis[x]=;
for(int i=head[x];i;i=e[i].next){
int v=e[i].v,w=e[i].w;
if(dis1[v]>dis1[x]+w){
dis1[v]=dis1[x]+w;
if(!vis[v]){
vis[v]=;
q.push(v);
}
}
}
}
}
void spfa2(int S){
queue<int>q;
memset(vis,,sizeof vis);
memset(dis2,/,sizeof dis2);
q.push(S);
dis2[S]=;vis[S]=;
while(!q.empty()){
int x=q.front();q.pop();
vis[x]=;
for(int i=head[x];i;i=e[i].next){
int v=e[i].v,w=e[i].w;
if(dis2[v]>dis2[x]+w){
dis2[v]=dis2[x]+w;
if(!vis[v]){
vis[v]=;
q.push(v);
}
}
}
}
}
void Cl(){
tot=;
memset(e,,sizeof e);
memset(head,,sizeof head);
}
void work(){
Cl();
for(int i=,x,y,z;i<=m;i++){
x=read();y=read();z=read();
add(x,y,z);
add(y,x,z);
}
spfa1();
spfa2(n);
int shortest=dis1[n],shorter=0x7fffffff;
for(int i=;i<=m*;i++){
int len=dis1[e[i].u]+dis2[e[i].v]+e[i].w;
if(len>shortest&&len<shorter) shorter=len;
}
printf("%d\n",shorter);
}
int main(){
while(scanf("%d%d",&n,&m)==) work();
return ;
}
poj 3255 Roadblocks的更多相关文章
- POJ 3255 Roadblocks(A*求次短路)
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 12167 Accepted: 4300 Descr ...
- POJ 3255 Roadblocks (次级短路问题)
解决方案有许多美丽的地方.让我们跳回到到达终点跳回(例如有两点)....无论如何,这不是最短路,但它并不重要.算法能给出正确的结果 思考:而最短的路到同一点例程.spfa先正达恳求一次,求的最短路径的 ...
- POJ 3255 Roadblocks (次短路模板)
Roadblocks http://poj.org/problem?id=3255 Time Limit: 2000MS Memory Limit: 65536K Descriptio ...
- 次最短路径 POJ 3255 Roadblocks
http://poj.org/problem?id=3255 这道题还是有点难度 要对最短路径的算法非常的了解 明晰 那么做适当的修改 就可以 关键之处 次短的路径: 设u 到 v的边权重为cost ...
- poj 3255 Roadblocks 次短路(两次dijksta)
Roadblocks Time Limit : 4000/2000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other) Total S ...
- POJ 3255 Roadblocks (Dijkstra求最短路径的变形)(Dijkstra求次短路径)
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 16425 Accepted: 5797 Descr ...
- POJ 3255 Roadblocks --次短路径
由于次短路一定存在,则可知次短路一定是最短路中某一条边不走,然后回到最短路,而且只是一条边,两条边以上不走的话,就一定不会是次短路了(即以边换边才能使最小).所以可以枚举每一条边,算出从起点到这条边起 ...
- POJ 3255 Roadblocks (次短路 SPFA )
题目链接 Description Bessie has moved to a small farm and sometimes enjoys returning to visit one of her ...
- POJ 3255 Roadblocks (次短路)
题意:给定一个图,求一条1-n的次短路. 析:次短路就是最短路再长一点呗,我们可以和求最短路一样,再多维护一个数组,来记录次短路. 代码如下: #pragma comment(linker, &quo ...
随机推荐
- Android开发中遇到的小问题 一
1)想要ListView活着Girdview左右留些空隙,但Scrollbar要在屏幕最右边 在xml中加入 android:paddingLeft="8dp" android:p ...
- UI控件(复习一下)
如何修改控件状态• 可见,确实需要经常修改控件状态• 那如何去修改控件的状态呢?方法很简单➢ 每一个UI控件都是一个对象➢ 修改UI控件的状态,其实就是修改控件对象的属性➢ 比如修改UILabel显示 ...
- Bootstrap分页插件--Bootstrap Paginator
开源中国有一篇介绍的很详细,链接:https://my.oschina.net/shunshun/blog/204587 使用这个插件和使用其他Bootstrap内置的插件一样,需要引入如下文件: & ...
- 学习 Mysql - 在linux上使用yum安装MySQL
1.检查已经安装的mysql信息 yum list installed mysql*rpm -qa | grep mysql* 2.列出已安装和可安装的mysql信息 yum list mysql* ...
- v0lt CTF安全工具包
0×00 v0lt v0lt是一个我尝试重组每一个我使用过的/现在在使用的/将来要用的用python开发的安全领域CTF工具.实践任务可能会采用bash脚本来解决,但我认为Python更具有灵活性,这 ...
- NuGet学习笔记2——使用图形化界面打包自己的类库
NuGet相对于我们最重要的功能是能够搭建自己的NuGet服务器,实现公司内部类库的轻松共享更新.在安装好NuGet扩展后,我们已经能够通过NuGet轻松下载自己需要的类库,下面来说一说如何将自己的项 ...
- Flex各类型坐标转换(全局、本地、内容坐标间转换)
Flex包含3种坐标:全局坐标.本地坐标.内容坐标 全局坐标:stage级别,坐标原点为舞台的左上角,如MouseEvent的stageX.stageY坐标. 本地坐标:组件级别的坐标系,相对坐标,坐 ...
- Linux 性能优化工具 perf top
1. perf perf 是一个调查 Linux 中各种性能问题的有力工具. NAME perf - Performance analysis tools for Linux SYNOPSIS per ...
- & fg jobs bg
& 执行程序的后面加&可以将程序转到后台(这个后台是当前会话的后台,并不是守护进程)执行,即$./a.out &,这样我们在打开诸如$gedit test.txt的时候可以写成 ...
- linux系统的任务计划crontab使用详解
linux系统的任务计划crontab使用详解 其实大部分系统管理工作都是通过定期自动执行某一个脚本来完成的,那么如何定期执行某一个脚本呢?这就要借助linux的cron功能了. 关于cron任务计划 ...