Description

有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。

Input

第一行N,M
接下来M行,每行形如1 a b c或2 a b c

Output

输出每个询问的结果

Sample Input

2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3

Sample Output

1
2
1

HINT

N,M<=50000,N,M<=50000
a<=b<=N

1操作中abs(c)<=N

2操作中c<=Maxlongint

  刚学了整体二分,跟随神犇的步伐走向了这道题......

  神犇:这道题不是整体二分裸题吗? 我:......

  也许是我真的太弱了吧:

  不过好歹是A了,讲一讲我的思路:

  首先,我们二分出一个答案$mid$,然后扫一遍当前区间内的询问,如果加入的数$x>=mid$,那么把这段区间的值都加$1$;这样就可以求出区间$>=mid$的数的个数了。

  如果你还不会可以支持区间修改、区间查询的树状数组,请左转树状数组区间修改加区间查询

  然后,根据这些东西判断一下当前询问该丢到左边还是右边,递归处理就可以了。还有不要忘了询问的是区间第$k$大,所以对于丢到左边的询问要先把贡献给算进去。

  这么做原理是什么呢?我觉得就是与普通的二分答案一样,只不过普通的二分答案只有一个询问,这里是把多个询问一起处理罢了。

  下面贴代码:

 #include<cstdio>
#define maxn 50010 using namespace std;
typedef long long llg; struct data{
int tp,l,r,k,id;
}s[maxn],zl[maxn],zr[maxn];
int n,m,ans[maxn],tt;
llg c1[maxn],c2[maxn]; int getint(){
int w=,q=;
char c=getchar();
while((c<''||c>'')&&c!='-') c=getchar();
if(c=='-') q=,c=getchar();
while(c>=''&&c<='') w=w*+c-'',c=getchar();
return q?-w:w;
} void add(int x,int y){for(int i=x;i<=n;i+=i&(-i)) c1[i]+=y,c2[i]+=(llg)x*y;}
llg sum(int x){
llg ans();
for(int i=x;i;i-=i&(-i)) ans+=(x+)*c1[i]-c2[i];
return ans;
} void solve(int top,int end,int l,int r){
if(l==r){
for(int i=top;i<=end;i++)
ans[s[i].id]=l;
return;
}
int mid=l+r+>>,lo(),ro();
bool ll(),rr();llg x;
for(int i=top;i<=end;i++)
if(s[i].tp==)
if(s[i].k>=mid) add(s[i].l,),add(s[i].r+,-),zr[++ro]=s[i];
else zl[++lo]=s[i];
else{
x=sum(s[i].r)-sum(s[i].l-);
if(x>=s[i].k) zr[++ro]=s[i],rr=;
else s[i].k-=x,zl[++lo]=s[i],ll=;
}
for(int i=top;i<=end;i++)
if(s[i].tp== && s[i].k>=mid) add(s[i].l,-),add(s[i].r+,);
for(int i=;i<=lo;i++) s[top+i-]=zl[i];
for(int i=;i<=ro;i++) s[top+i+lo-]=zr[i];
if(ll) solve(top,top+lo-,l,mid-);
if(rr) solve(top+lo,end,mid,r);
} int main(){
n=getint();m=getint();
for(int i=;i<=m;i++){
s[i].tp=getint();
s[i].l=getint(); s[i].r=getint();
s[i].k=getint();
if(s[i].tp==) s[i].id=++tt;
}
solve(,m,,n);
for(int i=;i<=tt;i++)
printf("%d\n",ans[i]);
return ;
}

BZOJ 3110 【Zjoi2013】 K大数查询的更多相关文章

  1. BZOJ 3110: [Zjoi2013]K大数查询 [树套树]

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6050  Solved: 2007[Submit][Sta ...

  2. 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 &amp; 3236 [Ahoi2013] 作业 题解

    [原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 978  Solved: 476 Descri ...

  3. bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Stat ...

  4. BZOJ 3110: [Zjoi2013]K大数查询( 树状数组套主席树 )

    BIT+(可持久化)权值线段树, 用到了BIT的差分技巧. 时间复杂度O(Nlog^2(N)) ---------------------------------------------------- ...

  5. BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec   Memory Limit: 512 MB Submit: 418   Solved: 235 [ Submit][ ...

  6. BZOJ 3110 [Zjoi2013]K大数查询(整体二分)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 11654  Solved: 3505[Submit][St ...

  7. [BZOJ 3110] [Zjoi2013] K大数查询 【树套树】

    题目链接: BZOJ - 3110 题目分析 这道题是一道树套树的典型题目,我们使用线段树套线段树,一层是区间线段树,一层是权值线段树.一般的思路是外层用区间线段树,内层用权值线段树,但是这样貌似会很 ...

  8. BZOJ 3110 [Zjoi2013]K大数查询 (CDQ分治+树状数组)

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...

  9. bzoj 3110 [Zjoi2013]K大数查询——线段树套线段树(标记永久化)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3110 第一道线段树套线段树! 第一道标记永久化! 为什么为什么写了两个半小时啊…… 本想线段 ...

  10. BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)

    题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...

随机推荐

  1. C语言中的变量

    1. 计算机需要处理数据 2.数据需要保存在存储器上 3. 计算机只能识别0或者1的二进制数据 4.我们看到的,用到的所有数据在计算机中都是以二进制存储的 5.内存中的相同的01二进制数据,以不同的编 ...

  2. c中的关键字、标识符、注释

    一. 学习语法之前的提醒 1) C语言属于一门高级语言,其实,所有高级语言的基本语法组成部分都是一样的,只是表现形式不太一样 2) 就好像亚洲人和非洲人,大家都有人类的结构:2只 手.2只脚.1个头, ...

  3. iOS 为视图添加抖动效果

    抖动效果在开发中比较少用到,不过有时使用了确有个很好的装逼效果,用的时候就例如一些用户错误操作之类的 效果如下,不过gif看到的效果没实际的好看 上代码 - (void)shakeAnimationF ...

  4. Java 往年试卷参考答案!!!

    仅供参考: 第一题: E C E A D D C A C A C A B A B C C D B C 第二题: True True False 11 12 13 14 No such file fou ...

  5. XMLA ODBO 以及OLAP服务提供者自定义的协议,我们如何选择

    参考 SAP给他的客户的帮助<ODBO, BAPI and XMLA - Sap>   SAP BW 提供的查询接口: 接口 查询语言 调用接口 OS平台 客户端开发 ODBO MDX C ...

  6. 史上最详细“截图”搭建Hexo博客——For Windows

    http://angelen.me/2015/01/23/2015-01-23-%E5%8F%B2%E4%B8%8A%E6%9C%80%E8%AF%A6%E7%BB%86%E2%80%9C%E6%88 ...

  7. SQL 笔记

    --查询某一列在哪个表里 SELECT name , object_id , type , type_desc FROM sys.objects WHERE object_id IN ( SELECT ...

  8. Configure Ocserv on CentOS 6

    Configure Ocserv on CentOS 6 Table of Contents 1. Install ocserv 2. Configure ocserv 3. How to host ...

  9. 嵌入式Linux驱动开发日记

    嵌入式Linux驱动开发日记 主机硬件环境 开发机:虚拟机Ubuntu12.04 内存: 1G 硬盘:80GB 目标板硬件环境 CPU: SP5V210 (开发板:QT210) SDRAM: 512M ...

  10. OpenCV 之 图像平滑

    1  图像平滑 图像平滑,可用来对图像进行去噪 (noise reduction) 或 模糊化处理 (blurring),实际上图像平滑仍然属于图像空间滤波的一种 (低通滤波) 既然是滤波,则图像中任 ...