Description

有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。

Input

第一行N,M
接下来M行,每行形如1 a b c或2 a b c

Output

输出每个询问的结果

Sample Input

2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3

Sample Output

1
2
1

HINT

N,M<=50000,N,M<=50000
a<=b<=N

1操作中abs(c)<=N

2操作中c<=Maxlongint

  刚学了整体二分,跟随神犇的步伐走向了这道题......

  神犇:这道题不是整体二分裸题吗? 我:......

  也许是我真的太弱了吧:

  不过好歹是A了,讲一讲我的思路:

  首先,我们二分出一个答案$mid$,然后扫一遍当前区间内的询问,如果加入的数$x>=mid$,那么把这段区间的值都加$1$;这样就可以求出区间$>=mid$的数的个数了。

  如果你还不会可以支持区间修改、区间查询的树状数组,请左转树状数组区间修改加区间查询

  然后,根据这些东西判断一下当前询问该丢到左边还是右边,递归处理就可以了。还有不要忘了询问的是区间第$k$大,所以对于丢到左边的询问要先把贡献给算进去。

  这么做原理是什么呢?我觉得就是与普通的二分答案一样,只不过普通的二分答案只有一个询问,这里是把多个询问一起处理罢了。

  下面贴代码:

 #include<cstdio>
#define maxn 50010 using namespace std;
typedef long long llg; struct data{
int tp,l,r,k,id;
}s[maxn],zl[maxn],zr[maxn];
int n,m,ans[maxn],tt;
llg c1[maxn],c2[maxn]; int getint(){
int w=,q=;
char c=getchar();
while((c<''||c>'')&&c!='-') c=getchar();
if(c=='-') q=,c=getchar();
while(c>=''&&c<='') w=w*+c-'',c=getchar();
return q?-w:w;
} void add(int x,int y){for(int i=x;i<=n;i+=i&(-i)) c1[i]+=y,c2[i]+=(llg)x*y;}
llg sum(int x){
llg ans();
for(int i=x;i;i-=i&(-i)) ans+=(x+)*c1[i]-c2[i];
return ans;
} void solve(int top,int end,int l,int r){
if(l==r){
for(int i=top;i<=end;i++)
ans[s[i].id]=l;
return;
}
int mid=l+r+>>,lo(),ro();
bool ll(),rr();llg x;
for(int i=top;i<=end;i++)
if(s[i].tp==)
if(s[i].k>=mid) add(s[i].l,),add(s[i].r+,-),zr[++ro]=s[i];
else zl[++lo]=s[i];
else{
x=sum(s[i].r)-sum(s[i].l-);
if(x>=s[i].k) zr[++ro]=s[i],rr=;
else s[i].k-=x,zl[++lo]=s[i],ll=;
}
for(int i=top;i<=end;i++)
if(s[i].tp== && s[i].k>=mid) add(s[i].l,-),add(s[i].r+,);
for(int i=;i<=lo;i++) s[top+i-]=zl[i];
for(int i=;i<=ro;i++) s[top+i+lo-]=zr[i];
if(ll) solve(top,top+lo-,l,mid-);
if(rr) solve(top+lo,end,mid,r);
} int main(){
n=getint();m=getint();
for(int i=;i<=m;i++){
s[i].tp=getint();
s[i].l=getint(); s[i].r=getint();
s[i].k=getint();
if(s[i].tp==) s[i].id=++tt;
}
solve(,m,,n);
for(int i=;i<=tt;i++)
printf("%d\n",ans[i]);
return ;
}

BZOJ 3110 【Zjoi2013】 K大数查询的更多相关文章

  1. BZOJ 3110: [Zjoi2013]K大数查询 [树套树]

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6050  Solved: 2007[Submit][Sta ...

  2. 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 &amp; 3236 [Ahoi2013] 作业 题解

    [原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 978  Solved: 476 Descri ...

  3. bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Stat ...

  4. BZOJ 3110: [Zjoi2013]K大数查询( 树状数组套主席树 )

    BIT+(可持久化)权值线段树, 用到了BIT的差分技巧. 时间复杂度O(Nlog^2(N)) ---------------------------------------------------- ...

  5. BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec   Memory Limit: 512 MB Submit: 418   Solved: 235 [ Submit][ ...

  6. BZOJ 3110 [Zjoi2013]K大数查询(整体二分)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 11654  Solved: 3505[Submit][St ...

  7. [BZOJ 3110] [Zjoi2013] K大数查询 【树套树】

    题目链接: BZOJ - 3110 题目分析 这道题是一道树套树的典型题目,我们使用线段树套线段树,一层是区间线段树,一层是权值线段树.一般的思路是外层用区间线段树,内层用权值线段树,但是这样貌似会很 ...

  8. BZOJ 3110 [Zjoi2013]K大数查询 (CDQ分治+树状数组)

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...

  9. bzoj 3110 [Zjoi2013]K大数查询——线段树套线段树(标记永久化)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3110 第一道线段树套线段树! 第一道标记永久化! 为什么为什么写了两个半小时啊…… 本想线段 ...

  10. BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)

    题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...

随机推荐

  1. IntentService源码分析

    和HandlerThread一样,IntentService也是Android替我们封装的一个Helper类,用来简化开发流程的.接下来分析源码的时候 你就明白是怎么回事了.IntentService ...

  2. Windows下 maven3.0.4的安装步骤+maven配置本地仓库

    简单讲下maven的安装步骤: 1.在安装maven之前,先确保已经安装JDK1.6及以上版本,并且配置好环境变量. 2.下载maven3,最新版本是Maven3.0.4 ,下载地址:http://m ...

  3. 安卓开发第一步:Android Studio安装配置

    虽然本人是JAVA开发工程师平时主要开发Web App,但因为项目需求需要开发对应的移动端.一时又找不到合适的安卓开发人员,兄弟我只好被项目经理"抓来当壮丁了".俗话说好" ...

  4. asp.net MD5 加密

    //Md5摘要 string resultMD5 = FormsAuthentication.HashPasswordForStoringInConfigFile("要加密的内容" ...

  5. jquery.serialize() 函数详解

    jQuery - serialize() 方法 W3School给出的定义与用法: serialize() 方法通过序列化表单值,创建 URL 编码文本字符串. 您可以选择一个或多个表单元素(比如 i ...

  6. JavaSpring

    http://www.cnblogs.com/suoning/p/5656403.html   1.序列化 JSON.stringify(obj)   序列化 JSON.parse(str)     ...

  7. iOS 导航栏实现总结

    目标: 在UI界面中实现 整体效果的导航栏, 比如1 首页无导航条,次页有导航条, 2 导航条中不包含下方不包含黑边 3 导航条包含多个筛选项 等等 问题: 用系统带的NavigateBar 来实现时 ...

  8. 一个经典实用的iptables shell脚本

    PS:这个iptables脚本不错,很实用,根据实际应用改一下就可以自己用.分享出来,供大家来参考.原作者佚名.源代码如下: #!/bin/sh # modprobe ipt_MASQUERADE m ...

  9. Consul 启动命令

    服务端: nohup consul agent -server -bootstrap-expect 1 -config-dir /etc/consul.d/ -data-dir /var/opt/co ...

  10. Mysql 创建用户 授权

    一, 创建用户: 命令:CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 说明:username - 你将创建的用户名, host - 指 ...