NYOJ题目1080年龄排序
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAtMAAAJVCAIAAACTf+6jAAAgAElEQVR4nO3dO1Lj3NbG8W8Szj0QYg2kKSVkjKATJSYi74QqjYCALlLlb0BVJ5A5IzxD0Bfoti9r7Yssbxv4/6rrnBdb1l3aj5a27P/rAQAASvm/S88AAAD4QUgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKIfkAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAX9vb3e5+v7vf37x+pH/o+Un8yMvt/X53v799k4ffPb3Mr7y/Vrv7/e7w+D7/t/Gu6vPx5n6/u68ePtNnFsD3QvIAvrIxK6S25W93Q+AQk8cYIKQMsVXyGMeTmZMAfCskD+DrWrJC7N9YxrCTx/jv8Pje90aIEXLMquRhjjDh3zgbAL47kgfwVU33WTZJHku2GEd79yxP5e7W+6wbgMYIQvIAICF5AF+SEQiMbhkfDwf5don5KeFuyzi2sdRhVThOTh5+rxEAPxrJA/h6xn6afrseTB7RGsnyqalcMb1yyt2W27eEu0IUPICfg+QBfElG+Ij/k6sXzr+75yFhDAOP4x/vuZA8AGyG5AF8XVZ3jaRixuDj4WA19s9P1cPnkmbmTiFzQcVMHn4fESdYTDdx3Lstz097u+/q0hGEOzLAD0LyAL6uMQQsGSLcz+Pldhx4/o9h+KkzaT+FD+2p2vv97vD4sC55OHeIlj+NqQP4CUgewNe1Mnks8WJMHrdK7WQqRZhPqYxBIetuy8K545Py5WMAvhmSB/B1rUsez1OJ4ub1JZ48zKywrp/Ha1qXFLp6AD8EyQP4ulYlj2r4/vKbg1XGeH+tprsk00j8bxjLSh7zF6W/kTwAGEgewNeT9WDL0q4vGeLm9cMoZtw9z/895hI3B8w9TN2nVMTv8xjuyNjfEWIYZ8MJOnyfOvBTkDyAr+eU5HGobqZUMfUbHWsegfLDiuTh1WNmdvJQAwqAb4rkAXwjic+2OMNPT5eoX1C24vs83O8i898akkfG79wC+B5IHsA3kpA8hH/mc63yj99mJw/nq0F64XvMuL0C/FAkD+AbOT15jCMRE4OZFZKebbHqK/bUKXIAPxbJA/hGYr8YJw8f/i6vOTFYgyUkDwCQkDwAAEA5JA8AAFAOyQMAAJRD8gAAAOWQPAAAQDkkDwAAUA7JAwAAlEPyAAAA5ZA8AABAOSQPXKWuqer2OP95bOvp766pJHV7HAabNZ315/yqOc6m649tbU7JnINl2B9gzfJq684dcWAgNhnw85A8cCF2gnBbEqG5CrRgU1M0tkzTC/Ofxijmv6c33WZsGmZFM2b/WLz9leTzz8A6XzGe+/rZnCt5eBtBefv6Ntno5Vb5MbxTN2VsE3eNmbqGA6Zuj172joc/4MqQPHAhRpCIxYxoi+Imj/EDoQto6b3pvL62GXt+Wn7f9fnJaMne7rb573NKWl6l4OS2guLKlYe+1k028n4HZ6tNmbCJzeTRNcuKsBNJ15A98OWQPHAhbvJo9bsoc4vitz3z60bymC+JAxfQy9RzL6CPbZ10qv98vJl+aP75yfyV1+WXYHNfd1Zf1bTz+hjuQThNtRUUYm1yavIwF92/J5ZRqJo/c42bbPD8tN89vQz/O7+yyaZM3sTdNP921rDvQHGTCV8MyQMXsqbm4TQ53uvHth6a4yWoaKX743Ecz7masbe73diMvdzeW+3K1JLlvm6Za+/TLFl/TEtg1AuayCyvSB7u+vWSxzBAqGfOlW6yvh9uxBwe3631v9WmTN7ETecXNazkYfSAAr4MkgcuxOvnYTU6avJIqHnES/f63YC6bdeX7g0fD4fxF+TP2ywJf0xtUWablJ88rMAzvuB2CxZGaX/sOjeZdQfkksmjrv2KhpvkKHjgyyF54EKEmofRVJ1Q81jaoPFPq0HyWqcNuyvO3l8r4+r5QsljaayT8kdu8hgnY9YTrFUpFhrM7grLYFe3yezbLpdMHkP08MpA3G3B10bywIXId1uMRuTE5GH3Xlya4vEkLV9DG43e6mbMjh395ZKHvZyx+JGTPIaR2t1J7Kddu6aq61rvvjPP01Vusrc744EX88mXS9xt8TKc88yL9zdw9UgeuJCV/TykSryVPIw3lhrKWKCW+ii4nRtPa8a82NH3Z+5+6P0h3WVJuPOS9WyLN66pu8bwxjCu2GadP3iFm8x08R6mTtJzkgZFD3w9JA9ciNfPw303XvOYeTWP+eW5D0HjXBiqzZgxB7ndFaXHMvu+P/sjl1o/j8Zcg7HGac2zLQ6/JJWWPK5xkznDXPqpWrNHsb0x/RtYwNUjeeBC1tQ8YuMSmjEj1ljnaLsZG+8JCE2gR2/GXm79Ev1SQp/edYvqua8vixyreZjZLumrRq8keVzNJht5t0K22pQ5m9jomev0MOXJFnw9JA9cE+Okat/YFlsUb2j/Gli67eB1cbQGEr4W40c4IXks28Ht+Gl2R5XbSTYZ8POQPAD0pz6SCgDJSB4AepIHgGJIHgAAoBySBwAAKIfkAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAP8P49aAJ39vBT4EAOCeSB/AdmT/uYfwK/fSWnSucXwIR5SeRz8eb4O+SAPihSB7AtzbWOORwsWSRMVg4v5uy/otNE36LFcAPRfIAvqOumX9Eb/p50zFDuL+31i+/SR8g/SJq+Nfnb14/pr8+Hg7727dNlw/A10XyAL6lMWCMoUIOFlNqWFnzCP/6vBk1vB+aB/CDkTyAb2oJHU1nZAil5jEnj5P7d/QkDwAhJA/guzJrEonJYyMkDwA6kgfwbRlPsYg9TMcEcmzrqun0B1zyUwnJA4CO5AF8V0OWGOJFqOZhPXBrvdc1WhfSCHqYAlCRPIDvaUgRQz0jmDzsuHFs66puj6EHV8xBtUF4qhaAhuQBfEdT4rCeqxVvpDh1jmNbp95miYWTl1u+SQyAj+QBfENen1G1E+nwxhJMnIdqT3vGBQB8JA8AAFAOyQMAAJRD8gAAAOWQPAAAQDkkDwAAUA7JAwAAlEPyAAAA5ZA8AABAOSQPAABQDskDAACUQ/IAAADlkDwAAEA5JA8AAFAOyQMAAJRD8gAAAOWQPAAAQDkkDwAAUA7JAwAAlEPyAAAA5ZA8AABAOSQPAABQDskDAACUQ/IAAADlkDwAAEA54eTx/LTf3e9v36a/3+529/vd04v736OPh4MxsD+Stzt7eAAA8MNsmDyGgXf3d8/ySF5u7/e7+/3u8Pi+5RIAAICvIzF5vL9WuyE3yP+GtPHxcNh7hRAzvnw8HEgeAAD8YGryGEoa07+b14/lRfVuS99/Pt7c3z1/fjw8BWLKNDYAAPDTbNrPQzIlGL//BwAA+HHykkeAUSMxhp/uvwz9PLjPAgDAD5eaPD4fbxLunkg1kurmYAzMsy0AAPxkecljKFoY91mGnqdK8ni5vd/vnl6cZ1vo5AEAwM+Vkjx29/ubp7vc5DH/t1c4qR4+z7xUAADgOmnJw3yMdkXNY/z400tvx5FptO53fgAAgB/hLP08nobepmNtw74F8/FwoOYBAMBPda5+Hm93ardTAADwY52zh6k3EgAA8MNtmTyMOzLkDAAAIAgmj+F7wKqHz5R+Hi+3czQJDkwPUwAAfi41eczpYfjuL7PmYVhqHp8vtwfyBAAACArfbQEAANgSyQMAAJRD8gAAAOWQPAAAQDkkDwAAUA7JAwAAlEPyAAAA5ZA8AABAOSQPAABQDskDAACUUzh5dE1V1e0xdfBjWxuDd4352WNbV1XTBT6pv3s2XSNM9djW2qyIw4fZ62Qcib5Op8G7Jnt1BMerTOoSK13kr6aYrqmyds6+P7Z1xvBnGH/uFlojf0Vej9zDK3CkmuN0VkfKp3KHTJ22NN5Tp/K9pK2zgjJP4CdM5ap3gmjyMJrwrqn8lsU4nw4tj8kZ1ljn/rDSJ47H47Gtp/EvG2ie6PGobLD4xlSyiZ+NvAGH9SDOsHKqU8/exvDmWJvO+MvbS4VNoC6rMeX5k9b8hxrDrslIEpGB5Q1u7ljeOtX2kZS5z21z8mNBXpN8lvHbZxd3LSZs4Iy5SBu7OpS9Zecxb34A+uNKSBLzMN84eSQdTM5GTf3Myh1M2FnqthX3oBN24azkEV3i0xNC+gk8djBVlb53x/f8FSfkTeUkDyF7WCdUIyTMfzoHRGDD2WecjAPFTCPJQ6898TnL2B/buumW3Xjc4JF5qdvjWIIYhz+2ddW0w6j6Y1s37Xy12zXuqb1uj/ZxE0ge9joXDrb5s/krPLzW9PKPubvMO7r5oj+AO7PCC4mbfyCl58Rh5TUbdq7xx+L1sE1PDh5zXA1uzmmO1NOUuzk3PQBlaeff4AEijTMxeaTukvN1VXTPWJM8wsXOYBE6KSitv2APfXJFMdiWl7TMvSvlKm69zBN44D1ndtadALNOyJvKSx4JUcOcS2u3tioWQjHEfi316sAaa3QNmcOsOvGpB+o4v8MBY8288pFhJSxJZTq9N50dZqzksYzY23GXa4Xo8OIayV/h1voRYoe0nmI7unXCyUoe7gylnrbUgYNVCnf59LV3nvH7pxl/TCvKLOJ8LJdBackj6YzXb30ARmZfkdI+RS9QQ4fO2kwg79nOq8rBax/1Vd12gcpwaPWcv+YR2P+3au6yax7nTB65J/DAzhWYm4yDJOuEvKnc5GFWMtz6unA5UhnrWVmW6WTln23GYkDwnHCB5CFviWHUXVPVbadet5vL3jXjTZWmm04A89JaN0XsOdbuVi0zuMy9sSzR5LEsXs5pWFwh8o4vjtve0Z2Dad3dFikIKea22TkDe6U9YQp+G9p65/czjz+UGiOTSOTUlK6g5qEegFnXuNpCneNuiznHxpDDy01n1o+94ou6UHOZRChYNu1yFRQ6DsYPBZZXbidTr9ajhg+b8+78qR7jmVNRFU4e2SfwaUDtykXedkILK812/gl5U9nJY15/rXcOsM/56mo2qyDLwk6D2CtTP6i9FW/nNHnfPTl5BI7WKbjWTSOnLKFC1DRNVdV1PdZJ5tNI0xjXmvb9hCHeWKvKXCrnvzOTh73M0X1OOzHqJzP5DDbOhDsva2oesexkr39vZ4ifjf0dRGkMzz3+/jjfkfNWVEb6CrDGoq7YsjWPhBUYnUJ4SpFRC+OMXmL6EVE87Iyzhd5YJNY83A0jjGq4REpLHuYf4YXIsCQPY3Txg37VVPzXy9c8sk/gkRlNrYWE1mDWCXlTK5KHlhL8hsid7WmlhNtvt2/IquQhZz4veSScTN01INdovEm5u4AyFuecPC2vt3THtrYyjXLh4dSWqvzkMX+sza6z+buKuBjajn7sGr9mlpU8lP3SfFs9kqwYrPJTQGplc/Px29fP2S1olNN+nanmsfUBaDGjtzg70gkqJXnYGyk4mazxmyfIqZUXo4bzp588wktxXG7ohqoj04hi9aRQdSawgYPJY948GySP0Iz7S3ye5JF/Ag9NV50Vqblemzy8E/KmViUP5dh3r7ScIzJ0VgpOPW3HWZU8ci+5nBUglWjcko6+nw81eOPkoh0kdXvsmvGojO+484XJUIJJSx7zijZ3w8pbj+GWW1hAYcWpEbt31nXS2czdnpEPSUe1tdzzhYm3hMOgmbWF843fXmlNG1ruFWePuYSXlTxynOMA9MdU5zz4nJA8uul+qrlm6qZx+7lmNcXOBYq7v8yj3iR52LUyu+QsV5xDm3nNWd2a/QLJQywo6KWEnPNHxmzkncDdZfDOxNJKX04hobzl7ELpJ+RNrUge43WZf3nmnyeXYbyhtVUj7/v+H9vUPFae+KxF0LOWPs7pZSN52J/tpL5foR23s09Zw02aLjl5eNOZLobG0QSPOvlAEGo+ytZ2Tg7TuHJqHspJWJ8hYZm00868AzsrwNynj+5Xb5QYv10nc5b0tNOFu//EkseKhvYcB6D7rtPb2x1pMv8cNJ/shlfE41WZYrQeYQ9jrPmTk4dwTPonZa9xTqh5rFEmefhTDAxwvpqHO4bYCTww56ESlTQCealXnJA3lZ08lnjhHSJ+8phfcXKGF1iSFi08oJ08HGdJHt4iH9u6qmuxe6CyN83JY77tGjvthSOzuk4Sk8e4O0p1G2UNpIbrZfyhiN0H9/SUk1Dyadd7y59sqOTgvhc+LZ1l/MOe1QoLfHryGDjJI2Uju5cHkXWy7QHovDGfplLbi/h6866gp5uSkegxjHlKKaH5kYuNwoGSmjymA0o5PXtzbV8ulql5tPNCm8nDCCTZI19Xc7pg8oiNt1t2ND13GB0ErU8Gl2n9CfkU0eRhL6jf0qpvTh9OuhZYf1UinOX0VbUqeURvMpiVsrl8YVy3G7PltPLjNdOyM66veYgFtIzk4Vzu9Mb6V/d3cwtJZbHA5Kz5tBYg9ULLP2148xQd2Fpue5XLWcF80x2VvJ+cefzymj5T8gjUPMz5WQaT4soZD0B7xoQzakx0SPckbh/e0dbZa1bFORgbYmGAtclD6UwainTmwp2n5jHOpjO305/miWmTmkfXVHVdSzfGnHm6ePLQ2q9pM4jz0FlfEOW+FTp8Uk/IG4skD3vf9M+W1i0C93xpvWl/xC0KaCs6XBxJv74Shkk88dmDOYHAWmJzxxxDhDMye9HHcU2DtqtrHjZ5l06seVhzap8Bwm2l89FoDcb6w90s2jQ2rnm4czq9Pyxo8ASkV/8D+//W4zeKbEL8SjhZRK9mss/6y34T//zmB6A6iuQ2I7Le3NHYf8sfto55YxBx6ZcZV8sRgeQxhdwulEPc5dGXd1m689Q8xrlf5u/Y1vPdMekEtHri83J2y91j/eR5QvKIzU/2CdxZBuXqKTIH4Ux8ygn5FFrymK9W3AsYZybMs6gfjb2QknOBduHkIawBazmcncAfnXQ5arzW2V/i0Vh9TZNqHuLiWm/kJ49x6cy1KmxFtaIUvALyT9TGjt40tby+AzOrTSRwog0fQ+O2CEwktPzRi8iNx683DWlni/h5OzN5dHPPCuvpBWXojQ9Ac6zCRE8qv5qLZw3sBz4naQYvsuwBnDkU5kWMzv7Z1v5kYCsHd9eUk0149GF+bdM9NWubMmPaTiXXqeHpT1+qcxw8HKLzk30C15Yi0rnJe00e+uQT8ikiNY+NiIekSmss5xeMz1tHWOjo0M5UG/GnHlhIs/bu7Iwy4zrJPjwDq8+eK+WcuozRig3mKS22xoxh42eBppOGFzadVKfXOfuWPR/mqIKRKbqskf12fAhJvpTdfPyh01xS8kgYyLhGjK5/u9AQ/sh5zmWR2BarNfXRgpuTC7Qr0zk3ibFI3Dmm7xTUZ9tdc6GY7+xH4RWivOtepImNYcpOHZj2vB/rlchQYAzuwGLl0DvRuJcCKUdgfJGCQ+ScwKdBlDO3MD9dU0Wec1tGmHVC3lyZ5LGNc9V9LkGqaRyzfvo0cSpS8pDPZXmWcaSNILRwJXZ0jxhftxlv3R7PPX61JpbcHKQcTekb5iKb0JmBpEYwmE4C68Ra4bHUt77qVlSsRHdOUzfbY9s4l6RSHSKpJp4y0cguckrNY9ONu1TCw2I16uAULnpC/krJAwAAfHUkDwAAUA7JAwAAlEPywLW65G1o4NrJ30i2/jFXnN2VdfS5pFDy6Lzf9rZX2vY9IhPNPenM58FDHZHMh0kuS+qlFH9OfCJ2mA9PLGuZIw8HzAPlbfb1+0n6mjl9lKdPK/zdlKtnbEPR5xTPLbP7f+C1tE/GZB5Q1yXwvFriUX8V/YJzzlB5ZzTrsfPQxxKvcSJjSZyjK2iFrkGw5uGcqOxDu2uqqm66c+23XqDQnvScBzx20oNU9lPK/qjmsckPOflPmRptc/QZLO8pA2nPyztT5Oy4efu58Xhf7Kn12DOw1kSn4bUHLeVVHLb+6E1PHhlzNM6OtoN5lO+bOPM5ad5dE77WIvqUs/e8u7Ro3kJ5e6Q7xAkHyNrkkbzW449BCl/JMV0cnaWFV5KDfJHlvxq5GFPaY/8E4Q1o7S2hSaSsf3OY8GPPwpO/00uhDybn8WPXWI1J+HyQ1DokrCNtZjJGf41VsNjdFv/LRpa1es6l0SsZ7mFsDyGdyYT5XzgHrzn8MrQxkDyAPDLvg9IJS9iDtKMguNYz9kR//PbBp34XgT+aYQHN5bbXgR38kr7g4ExOWj/K9wN45DOp2PJkRa0N1tHcKobO9uo3jwTyqLlXOifxrOSx5gAJbdT50NVXXvg05rafcoBw9n3pK4bOV1oYZym2Lw1XZq29DfV1Z26Q7OThtuPBQkE8eURP4POAzvK5c6/tCCnrTpid4NdzaROqm2b40uGznPO+1t3p1H4egUP8HMsauFqQrk2D3yczvKntEJnJwzpUspOHfSBMe7B3bg4lj4xTWOIJT/wmhMB1gP0lIc5haC+l9Vda8gifCE4/ga+72+J+oZG6zynX7PFvETjvKSMhWdrFqeTk4e4o1ppKS1dGQ3fKAeK/EfoaqvC45o/PJayk5OFXhWNR72R5N5GNzSifHdw6QXbyyLt/FV01KdcL9nVnWg3VS7vihlVeXi657NfmUUpVO+tC+ix3+b5v8si+p7j+trJ3tZBXWzJzgtgk+lNS9lU7eTjnnqy7LeKJ1T/8AyfDYXKB9Zm2kuxgEBqhfOwth57ZwgyDyafheVkj89P32gkx9la64DpSo5Z76X4Uf4FLFju7rj9KEkmbMXTqy0oe3hvakMejtm5DySPjALHe6FJ6LEX2/xOTh162LUXa847LL0q59wjdT6xOHuLiZp3Bp/Gn3IzzptLM38spBFlvjoyg4uw9wWOym39o1zmZ+TX4yt8njBWy3a7xPZLHskqDJYNzJY8A7/jXLynN3Smj5uHfVJRyrjTO3JpH61+wBNaofzgFxNo78wwhZwIzkE0/R6WcJlrhl5jm267Gpd/Xq3kEdmG/jiBtnmV5ArHmfEts3ySyGg21jchJHv7ZTj7/JZwKMg+QVS2Zv6DKOpjedpNHeOyZRclTuPubcLwHTgHmsbgM5mzkVckjqz2NtJXylOKjlo5F/+wjnaz1/WXe+FLJSKp5jNm3SbupukVgGI6x+sKdyFOFax7LTrkqeZyFlDzskGm3p9slj2PXeLcwT77b0jsdo/Q1OmwMrbqaVtgOnoiTSde50wWAfoWaljzOLafmkda4RXaIpm3rSvn5q2kCyiowVt6amp+dOsbZ8QsU3tS15LEQ69vmMqnxK7D+Tj5AlgnlhHP9dkVazcNUMHnM07NLFGbyl4/zrrEXV8+EgX1OTx79srXja0K5obGMVTpgYht3/FzoiFGOc7PSIu9FVoW8blt/v66bRt6NI0u4rqjvjW5Z8mtPH18zedhbwLlh0rTH+cZIm/tjreZ1glfz6J2DLPtui/iOfWmiXqiESgfSKpKuFTfYG7W2ql5uirnnoGBlJXNtakddssyah7/0fpu8vGLvZONf84vOOX5cV5HFXruwYsMjvujtLaE7MdPwTkUsNLpwFc9ZH+sPkPHj6esrekBJycP/gHq3pQAp6c7nxLQa1bGtq7oWq8arah7mjFiHt6BrKm3aioz2Rguy5jyHjzHzhOVdPal7jT/d853M/CnbpadrTh85yUNRJnlYW1AqwXmR3w4l0eQhL6GbPKwz3yY1j94+YSknVmOvih19ykWMcFZ0Fnm6xNS2r7iGplOzt36W2t+SPOr2KJcmlRkUJAQvfa2kUqcQmbq5OPOGdJfRWQuBzbl5QxbJFMlDLUPEkkdgEdy31h8gyjWqXs3okw6oePJwD7WLJ49+2dHF+fD23/ncKQx+SvJYBtUPp2G1ams/rwjgHXWx5JE8FeUE34k/42xeaASnO0/8TMljmvb1po/MmofZrNTtMXTaPBe9BRXWcUbyWEYVqnn0gapEfDdT90jrVC4vR+KVVdpdF//gNIrbznXovAq8s8j8rrt+6vnHVI2VJba1zg2FvBCYK3dvTbyD5a8urzJmTDXS4Lrze7XJQ6zj2J8O7dX+UbTmAFm2kDcPVVU1ndyt1V1GZT27ycOOzvpdinKkfSdQbfAHl496Y/DTkkcv7SDGG3V7zNvLY0ewc6UXOf/5Iwz/aWz6pvG6trklTm+O9FWwDWkzhDbNZaUmj+WF7L1lY96k3Sse5wIpL3nI1Q2xNc68OxDZI6WKgLmEXqlQT/Dj7i+cHoTElpo85hmRjmH9M1LyGP+zmwqCY/NgJw/p0kxabznU80ry7pxU83COmsjZMrIbXWPyMPcu99Q2f9hZp1ZxRAzvmQeIeUHnFi5jlwlpB5S1txsX50qJ5QLcXWuYs3n1K9cJ5guh9JWcPII7jPxmKJsHhIf0Fmjrmseye1l7oTVw/JR5ruP7elOGJC15TPeyrQqyGS7l5T3LZYFbeZ3PClI5Njd5CBfv7suhnX91zSMwCnklCieKzuxUMb1gB4INkke05mFPR04e4vlog5pHoBzlLI1XiEzbV5OSR8qLSW9fT83D7cyidTINnvyGVaz2vV97gPTzeUDuwiu9lnxALTOkh1+nMLjhuT+yPzvZ2V0B42vS4SduKXdqicnDHqxr/HGsv5TSF1h5M/XUpYwwUvPwT5KZpbvQDJ9sRfKI7WBnFE8e1knfbMeN5KGsvrMlj+mq3jkxzKUI8zjISB7+rmskj6axnzOWnJ48xKsYcYLOyo3uQ8IKcFp486CSa7ah5CGvHyl5GNVq9ySl1TzUWXDfSzpRa8PFzwTh5GFccgpTjcxU3lvrhJOHeHlmlinU6zTjzcD8yqtntu4ACQ0rvZF8QAkzL7fh9hXKlmfyyP681F706c6jMBOBF7vtUZqliFDymLe6M4y1H4kRT5p40roLHRHO0XuO5GHMajD/XKYxz08eFwwe4eSxzJgdn7U7GuclN4bSENb1WDh5CMUS4TQqLGKsimarpae8hLVm7TxeEUMcOqEwrqQ4lN8AACAASURBVK23eM3DISy0f7fF+4RZZrDnwzoFBtt9Y8qpTdeKAZQpxjVzF6jstO3PlDnlbc8LaTWPrUnX44HB0g+Qhb6x/JsRaw4oa9909vaznb6Du+t06OTub9Hm6Zw1+8gGiJ/PMgrO4fso5kknemj7C+HPgzki43ZXqi1WePaWu1xI6tO+w1Tcuc93etySkjyk9lgv3WwTrtQM7uyiZjudsGLd2s/JIskjerfF+0SkEr3ZdWL8OEo8Gaza1Ob9iHhoudARUzR5qLdAFJkHyKrZWXlACVnj5B0maUb0+T22zfXvbya90CIMt0EVMG3Q2Eq+YNOcLTd5XHbpUpIHAADANkgeAACgHJIHAAAoh+QBAJfn/EDN/OpVdNMANnUNycPtOJ7QT9DsmvzFDstTHuLO7cge71GofeFB5NnR3Ge3sp40Fd7UurAW2f7SRPQJm6snafYye82d0J0x1Inam0YX+u5xg79p0hdogy80iD4AkvKYtfBCWqfyTZ/rCzx+l7F/JDzrJj1cH/yqgPS5WnE+yd8JsjpKCz2LU7dawplOmPnYRnAfpyz/sNlVCCWPNY8CxLpZx75GIelrKdx+5mqjlGb5Egltft2lWh6HyVw9iXMlr4H5s1lPhmY/Zxrv7p14rEwHuPZMspYu5hnw/0Of/9COd3I2cWY3dL6wVnlCo7GsT20JnO8XkB/4SFrc4ceWk3O9+V0Q+h59ruSRuICXTR4bNx3KRBNDYPz84O9i9rcIyLuQsIzahss/n2ijMje/8NB57sOj7tPVY7ZOuC4LTkre+YMbIfULKXLbrzWzf0l5NY94sxM61v3H5pZ2xT3Zhca/flN4s+PtInJBxdhDghUXb08SHsdbe56aD7j0mkNwz9O+PkHY453v50ld/0bymCyPDI8/Hu/NUjN9/7CxcvVzl508tFi75uBb+Ti+vYWjEzfnWjoNOSNwkofwyeXljAWQpyDPf2wXT1lqZWoZwywvlkwe6at07el+XK4112/R84OVcd3TWXibOect8TS27nwyTzj1SeXIqpk/pm2rMXLUw482LGfIrONdba3mNaPGo6SLh6Q2Qmy//CF+UvIICSYPdVNYm8qrseSv22lC/rLEkkf4kjZ4Wj5lP7AreKkBJri5/Bw4HTJqFJOuvgKxXat5TEV/rfjvrlZht/B+XL5pNk4eoQVSJZ2+lJQSqXk471rBTU0eCQtuDxb/+MnJwz3ClvYp0svBvY11WvKw12fTuOnYel9Ie+eSepPLFj8/jKuia6e15h3t/uGYVdNddT5RtlDo5qpzEFkLmHhZt809snmBp9UtVEZDBSBlS6fsZHr75Q/2k5LH2pqHt6nsD3SNfYaIHQr6TMj7rnjmt5OHs/w5R6a1n+bNvHRMpYQPIag573pnCrkZCRUH85OHccQ5dQ2J8wNsQhGgwN2W6KIui6BcQotjs9v4M9Q8cpOHsVedK3l4W9O8qojU9O2Fs5PHmmvWNTWP+LTOd6pXTq4Z54fjsR3HEVgG61op+cpqxflE3OjidJyBh5m3dlthxQunBKX9EPKBe62kRohhgVrx+8+c+TQ3i3tNahzL0TJd8m627rq8jOupeQw/Xeq2UWaOXwplvT+SNMPsBRbB3Am805Bw8Z5R81g+s7TksaGdfdc6n6gFPXthtUGkM0Xrx/DwuVhvjuUdYZzEcmR7e9SxbcZfgDFPMu5uIM5d1rV7koTmbJkboYSTMHGrBh47ZHKSR/oszMwmLDV5CNdVoVTsbya1Jqhn0dSaR/Sab2XyUJfshD4f89YXKjzGIOG2Len8oJUa5/FF71iIB0D2+SSwypRLHG9TSceIOhY/Kyirwd9/h8DmjmxZA11bj5dI/t7aLjuhcS6zTv12ISS0x2buZF8yecQihH82mD+2qubRNLWbkaUDPWG2QtsluilCyWPooCfvMfPoY1nCbCXc/Vk4VLyuUX7wCtWTm06t3irVUTcOGbWauj0mnYzC5zXvxG6dEap6+CmK6eeHu7au6lrt8RFPHieJJe2UKkh0d8torKYjZQnqwYMxMgtOwzweWmuShz1Rve4tFTGc0ntsbXTzzw3Gk0e0AD9+uGvUiw1pcHPsRv1gywL+9Id+b84fQBrGOj+EC4TL6tyw5tHr55N5z8m4nLEWPHraCSWPplOmYR8FzquxolyQvrzpZ6sVF9pfLnmIMk+UYd7dFmcC4sQ2qHkEBzcHkE5D1tk665pAngFrp3NqPOLSy+dDYaGmKWlHsT/z42D2LDozHD8ZeUNOpx79poszHuOT8/97e4oxkbatp3Jn2kZIllHzSNoXhDWd1MHNKooEW9ykmoeZFo5H82hrrR09JXl0zRSDlkpeVTeNV57ulc3nZW3hg95OlpQ8uqaq6jr0IPG4IhrhZyLNxlktKG0YOuQJzNlJzBSZ5wctprurc33yUPdy/3xiXFiMixc+YFphe/iLaW1DYaTT6+5FrjGK6frKrb6N51L5XmGcvbzyhoknb5KH/FayseAktSfzDiFPK60UEyyJhq4AlTG5kUC5Ag8dmStrSP7sp+3rxjk8rY0yZ91c9Scnj7m4GysQuPNtT0RKUWZTbL914ZqHd/6Wr+uG+oU+n85uN9WBgslAmhW7uq11JhpbgLzk4RWslitKdSvaM+dXUGJHTGLNY5hc+H33UEuoebQnVf3CQjExZZzh88Oq5JG8rJnnk6WEml/zkKYXIO+y0rk64SLQqOXo91+E9eMvr7APa8lbnsekJf/+ycMaRtyAruXMYB1XSziMr7TsBia6KcwxKqehwDiiR4y6d7vT1j+edFazBpS3WuBMYX5ea2nkzwnjNy/b5NLEnEP101rXjHdMnQCotRQXTh7WZlYjdDM9QBw/xfslwZzkMYkPn508nDP0sIHHze6nDKlVdVaNfVkpTzSl5jEPoTZuy+qXZlJNHlJx0dnzVpdApAksB0bS5ktOHvIudlrNI/t8kpU8UoKQX49bTjzj3Jmv6tvJ2n+UkvJC2pekBTGWV76CjZzhrzlKZNo8efi1tVBrUk3Nh5AenTWcUzSIpJ3w7AvVDWsHMi7mc+fGWVLzCq9PaUwSk4c3mLTdgmeK5W/j/zPUZm+N8fGURu42ZjfR9r5jrxt/n7CvFpQ+XiccqwmbWK4fqN0oe3vFOzHdb4W1Bjews9jTi+1U3vGalTzCZ1ZnqeX0K+2XwrGflzyskYRXVUbykBsr77JkdfDw5qdbOhQOu2LCyXfDmoc0fvXNzPOJO+Hk6QQG6bwbuMbdFSPkOzMSun5IP3/kJQ/v0tDcWVfV7L+arZNH11ibKrALLSvRHuvSesQi6VisbjIO9tiWc88iwr4ZOpXHjhj/fbUZUmc/peYkX675J+/AmSL2evT9qdVeyojLHWuxtGhVv9LSqJUCa/HebXCLx3aHNTUP79SRmjyOx6OzfdclDz/3BBbRmbm85CEtWU6QTi4QBHZCrUwQTd7mh63EKpUF5sZfWCD5YkVbjuj+tpwT3XOgcgyEFlwZe0LyyLvS8K/5084nK5OHvJz2HPghsmvMuuk8jcCennPdkpM8nHOE/dHQTpKXPOSm4ErkJ4/4BZQRzxPCq1vYsmpQ/ob32iezZYttFbGUK8yI+1c3dJqLRuCUIyZBsGSTkPzEGXR3w7QzRbT5CCYPuVQ7VxL0+az8TDIECzk+TZsqM3lEj+Pc5OHkbnmo1BirpEUjGYiz5owysgjOKshKHs5ng7OrTz0xeWiHhzuf2tlWPDCyah5pVaDYYkRyQ7X0dxWHDI8iJ3nIJ52z1TzkofKTh3yI+eMy6h/2Tu3cdBEnZjU9oZVqlEXyah7e5JLyRKT9cn355DG3FNFmVyxdSLzDfWjYtTOGUUgPnnZ6aSh7TuJXJMbw/r6rjDUmafPHA234zKIflCOrYmttVW0mw7W/caLhmoc8BbF4bF3oTcvaNcaAwxDu9cG84pSNoixA/ICXlkFZpNDKd2crUpEwBndXWNIR5t+qSFmAadhw8lhOnX5pRbvroZzXg9vGmW1/FxOO0tgB4O9zOclDPTqTk0dwf5t285Nai7U1j8R5jCaPwJ5lDCQlj/BOOp8HpC7K+gTnkRpXPPa5w/vc+GIwiogvqOeKhOQRj5MJx8tXk1fzCEhP/lfqGPiCnTMunFDoDQ+szEhqHJ7bbvUaxTmE4mWk9Cu+wCWx2GqIp+FhJczfZ2E+R5FV89jgbsCX3+ldSvIQskLXOCdxbVXGw+smrIAaG864kvFbMjl5iHuv0uLJwvvbsW0Sr9oCB2Vq8pDfiy/MqppH6HySerttC0kVp/iVnzbUipqHmH1+is2SBwAAQBTJAwAAlEPyAAAA5ZA8AABAOSQPAABQDskDAACUQ/IAAADlkDwAAEA5JA8AAFAOyQMAAJRD8gAAAOWQPAAAQDkkDwAAUA7JAwAAlEPyAAAA5ZA8AABAOSQPAABQDskDAACUQ/IAAADlkDwAAEA5JA8AAFBOMHm83N7vd4fHd+flt7vd/X53v799Uz/5/loJHwQAAD9cKHl8Pt7c73dPL/arHw+H/ZA8vLdG769VeAAAAPBDqcljKmxM/6qHz77v++en/e5+f/P6MuQPrewxhY/xUwAAAH0frHk8P5nR4eP9c8oTw22UoSKiho+pNMI9FwAAMIsmj5vDfnd/9/z2eHPY21WQ5d/N64fw+Ug0AQAAP4+ePD4eDvvd4e52SB79x8NBzhDPT8MAvpdbensAAACTnjxebu/3u6fHhzF5jD08pn93D6/V7vD4/FqpVY2lpwi9PQAAQN/3sR6mU0/SOXks/xFNHlZSoewBAAD69GdbDo8PWclj7ORx9zz/x1kXAwAAfAmx7zD9WHe3ZRz46aVfHsSVeqECAIAfJTN5pNU8xnrJXOcYuprS2wMAgB/vDMljfKTFLHJYXwQCAAB+rMx+HvG7LeZ9FsP4xWLccwEA4EdbXfMY7qS828lj6gsi9Sfli8UAAMCGySMUOwYJP3ILAAC+s9zkcfs0/RrLVMMYe2+4vUpl0y/J8ZAtAAA/Uix5AAAAbIfkAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKCecPI5tXdXt0Xypa9xXVji2ddV0fd81la/pTh/5ySNJn5a2No5tLSycIXc1qss1z0TXDO+7/y/OWaE1dKW6ZsUWAABsIJQ8/Laz6byssKIB65oztnvHtq7q+kzZQ0xKm0cnUXi5hozRNcMWGgc5trUwsJAmzzS7/uqYX3Xm6yKvl1kRAACHnjzGE7NV4zi2ddOddMY+c0FiDjVnTTeLQM1jU6HlEosrTee9PtdFzr1ijm0t1RPMKV/DfxfbSQAAJjV5WJfOYzPSNVN7otTxY+aPnaXF7prKTknCnaKqaecGec0cxKse2WONzlV0uYw5s5rVabBlbTsfzlghya20li3t23TT/bbLvT79RdkDAMoK9vOINbNrrxeHVkzvCLGiMTCus5c20m0ErZv7m7Q6SoKK9vEwlzQ4V0nLNY2ibeaRHtumrr2c6I49ZYVMO0HiugoFI3eWp64+l3g9PLcAgLPJeLbFbmXni8esVrYPNk1zi5A3Tqe3oF9Rn/48tdVJ6+ahJDL7atsZqzhXicu1vD6swnHlNd1Uolqu+nOaYa3PhLoelnxU18bmE9f9tSQPbrgAQHGFax7dclUuvLXyBo7zOf+VqUnd+Hq3a6q6bZvQOOxbHlZAUOZXntfwctmjN98ex2QUP6y5DYeeVS2yfWto+fNKk4eaBwEAZxJKHk47dXrfjPmafMPkIU5FGdOWycOq+cyJotKbNeMPe8qpc6Utl5APzfJSbYwvOXmY483bKu5cakmK5AEAP1QgeaTc8lhz0v76yWNYM3Z28FeG06h5McQoRJyUPJxRW+lCqEDkdnoQ+nmE7rZIXUmmosfV9TDlbgsAlJfWz+PY1lXdNHZiWFsDuf7kEWqOxpbUXQjvSVK3vCC1edJzrivm6th1R/H7M7yqhRQLEqNYehNtph2zL6w5hmv47+giAwDOIZY8jMv7qbE1rnhXRYWrTx4pfUGHhXC6rUzNf9MJy+iPdVziLfLQXHZppl6pXWNsN61778YdX9y58XcR7Q7OhV4neABAeaHv83Bq7Ft9B4c9nlNzjO/kAnpCBpqfH0mbHe9+xcrZ0vt5hAswRhPL7YUF6wIALiDjqdqfYrPiy3XiOn/EigCAiyB5/DxHfjFOKBQBAMogeQAAgHJIHgAAoBySBwAAKIfkAQAAyiF5AACAckgeAACgHJIHAAAoJ5w8hC9b8n6PZI3pm8TFnx4Tvmhis4mK32Ixf6nq9B1i7v9vIfANsNGf5lt+W04YhbZupNeV12KcX1zLXinpHwr/dKz4BfTKWs34EVpv0/ADtgBwRqHk4beITee1U/MvxYed9PugWwSP6Rfj1V9kabrhf5e4cWzr1e1PQnterWvC5V+T9ce0rDTtd1vn4ZJnI76dhe0UXvPaTCtTF3/5JmlYfSAveXTNim0DAEijJ4+xlbPagmNbN91J3zqdePkbb+Lymu65cRZaaXFaQ4MUa1QzbPWrN10z/CBdtO3Xkkc9fXT5Cdmx/OStTP8H5vNXQmjNe/Rdy13iphM23PLRaPCbA7O1oadXh/2e7AEA5xD6xTjrZ1mH14xmbc15ef5YRjscnVTXVFXTzq2HXBOw0pPYug2NlfUT88Zv0OanhnjVY7u7VqFJezll+sFhO3l4oVD+WdtA5pHvBCWseWfGxa1tbYI5fTk/eG/snfZYlH1IrHlMw3LLBQDOI9jPI9Z4rj0xDy2D3ojZjVVs4tZPcLitm3GhvrRHXuFlHEW7/D7vsW3q+sScZVHSS2pxp6qbpnZWjl2ScGdyfNf6Vd3lE0LymFfEFDCUH8b1Kiny4qWteWllBPviTDNRuynG7K3jrmlpA0prvm5b84bbJt2LAAC2jGdb7MZl9SVhoOYg3gYJ9MuY/1u+VHd+Fcwebrm8Xl4fxjq3f1OJZ0UDlNbNQ7++11at1fA7W0PtCiz08zAmISQWdc6sQtDRvBPnpaCUNS+sNLOfjbNOnJqHO+tL0qrbYyzQyUsnrChuugDA1grXPLqlqiC85RTPpQ6twsTl5OF3K/BfMdtrobkfW7sNrny7pqrbVnoyxR7EnRWv3TNbRMt0C0WqiMjJQynozG22H2SSDJWjnDXvLptYHZL6efRuzlRLMHJ+WLLK2GuEAgcAFBBKHk6Te/qpea4pRJNH7LnWpJqH/xn1UttrPucm2y/r55obfisB2MHNyj3GH+7SeClouadh96nQk8d412Ye1FiVzg2S8FO54Xs97seiKdUcRsh6Ys3Demd18jCLJa23L1DxAICNBZJHSheENefllORhvBid9KnJw2n33cLBSbljWIfeMxfCbaVQDJG7dhjjlh47GessVd124lO101TG9e7f2hJfWT5+PJqzdmLycIeQEpaSPHrrxfR+M9NjW9MmaecK13IbitwBANtL6+dxbOuqbho7MaytgWQmj7PXPPpj15kdA5weCcF8FWqdxtTiLq6XEsQ6htIMG3ckrOpEVTnJw7ytJdxtMf67G/tUql/F4XTfWBFFI2242PHDmaNo8gj2O1JrHtMsmwkxvtUBACeIJQ/7wnou65vtTOJlpnmxfWrycIsUJ9Y8+qUVaqa7DMvthsD3WKjNnTGt+eshzJUwrbOmE9aGP9Z5NVitol1AEZ8lcT4uTWSbPpRrax6BlWvd8VH6eVgD6zk4mDzkXXSLh54BAAI1efh9Qbfqgud9fULgelnr/ri2d6vazyNcltDyTEKrHXhSVJwRd63bI+ua4alUr6PIMrHErizmN4lFhco6kVmeBtNmK7JLTfUQueZh5ZFwVSW6Adzde4OOxQAAQcZTtXBtUy4AAOAHIXkAAIBySB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKIfkAQAAytGTx/ydju7vxorfn2UOLTJ/LyT76zI3/D7J4O97AACA8wrWPIaMMf2k2PL7IELL7eUU+d0+mCICX/69VfBwf2ou9XvCAQDAFtTkIf4OnPAz5MOPsC9DNAk1j3jySP2x88ygMKWm4WdY2sb/cRaSBwAA5xTr5+H+NJmRG6yf2DpfzWO7H0eZqzXjLLhzQvIAAODcQslj/BHXdvnV2mPb1HOGsCKBmDy0JJGePAK1j+yMYIxL75JC8gAA4JzU5LH8svmQJeZfe++aud02EsT49pxT9Pst6cljGKfW5TTvtkwl5CVqHgAAlBa52yI0xmN1Y2m2p9JBes0jZBp++Gxg4DUZwc4aJA8AAEoL1jzkssGxrau6rr1Wu26P4/9LdQ/ziZJ4zSP4BG/g9SCrPjI8tLNJngEAAKkCNQ+rBGDlha6p3PQwJY/pEVz7bSEomMPoxYaNax76LIRnAwAAbCPwTWJddzSqBNbjLX7Tb92DiSWPsetqd5ySx/HoPkMjfzD6ety0SMJskjwAADi3cD+PMWQMX9IxJoux3HFsa7PwcWzr4Zs9mi740IiSMKZxVE4xRUkY6zLCMvPz3yQPAACKCvfz8Bpm/5Xlm8Sa1niyVqx5CHdpxOla9RUzC4g1mDVCj8Rs9XWpAADAwy/GAQCAckgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKIfkAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKIfkAQAAygkmj5fb+/3u8PjuvPx2t7vf7+73t2/hcX88HPa7+/3N68eJMwkAAL6JUPL4fLy53++eXuxXxzyxE97qxSFJHgAAYKQmj6mwMf2rHj77vu+fn4Yw8TKkCrvs8XJrDOknj/fXKiGvAACA7ytQ83h+smLE++cUHYb7L0NFxAofJA8AABAUTR43h/3u/u757fHmsLerIMu/KVuQPAAAQJCePD4eDvvd4e52SB79x8NB7lL6/DQM0JM8AABAhJ48Xm7v97unx4cxeYw9PKZ/dw+v1e7w+PxaGTdchuQR+0fyAADgxwr3MJ16ks7JY/kPKXk4eLYFAADYUp9tOTw+kDwAAMCJYt9h+pF+t2UcYLmZ4ieP8XZM7CvIAADAN5WZPEI1D5IHAACIIHkAAIByMvt5cLcFAACcYHXN47nv++krOkgeAAAgyfbJI+EfyQMAgB8qN3ncPo03X96n320Zf8YlCTUPAAB+tljyAAAA2A7JAwAAlEPyAAAA5ZA8AABAOSQPAABQDskDAACUQ/IAAADlkDwAAEA5JA8AAFAOyQMAAJRD8gAAAOWQPAAAQDnh5NE1Vd0ew6/0/bGtjdeObV01Xa/82fdds/x9bOtldMe2ruxB3XkR3+yaSrIMa82BPa/GGPQJj4N4H5tH6H7UWqrIonirxx5NeK7MQe0JZnwWAICScpPH0E5Lba2TNobPCQNPza6SGPQQIE1YGK83T+bM+S3y8Ir/ur3o9l/20MJKUhp+Y9GFGYpFNsk4kJc8EsIUAACXkJg81JhgtKB1e9SHq9ujPZamaaq6bRuj4Ty2dd00c3urRxMppHglES95OONrOrtW4LTe6cljnHZodsfP+qGraefoUFV1ezwej8s4Exb9aHzcerVuj1qRCACAC1KTh9XyDTHBu38QbNuMltxqt43md4wjTdvWdds2Y/owkkdyy7k0vXNLL9U8rFF6bXvdNEv4yEkeqZSahx2h5nlT71E5y+3VPKZhueUCALg+mXdbpDseUws+t3aBq/4+427LOGDKXRlzPqf2VkgeU22i6UK9RiJVHmvi1rKLYzPfCt9tWaYu3L+R5lda12MZyY13AABciYTkMRQj+j50EW0098bAwZpHlDXgchtiaG/N9tTtQuoEjvk/7MxhRItg/1N/Cdz1YNYYnDwkFy66pqrrepiy2+G26YaZ0CKcH7tMVsqaIxSFDwDA1Qglj7FttvoRKC2g0pdCaiqXllAe2LzfMTeZXVvX7vujpYvo1NHEniWrCGLVBsyWuTM7nPRee+3UDrxKhf0kTVXVbSc84LIscN105hM9/sIL3U7kLqvjjSW31woAANcp1M+j6Zy7GMnPzh7buqrrWix0WMlDuHNjFVia8D2Puj12Q4A4HqcqgVegUSoUds1js+Qxv1/ZdYnIM8OenOSxBJC6bb01RsUDAHBFUvt5dI15Re59Y8XSFE9PabjPjZjJYw4NoZqH8s0bSxnE63LSNU7RQEseVVVVTXOWmscw9iEM+fEj2HlknEDsNosdu4z1OHTUPTpFJXIHAOCqZPUwNRpF4SK/aafQMb1kpAvjqVrxdoo3QbFPSaBR1b/Bwr8TtG3NY5wVv//J9OYWt0DUmse0PObkI/1eAQC4nKzkYVxcmxGia4YnUr3bC5EmN1TzkB/KUHpL2gUZl3q3xe+BaSWPiOXhluG7PM7bzAeTh7vyeqP0BADAVVGTh9FrYm7fhC+dWHpa9LEbBcF7J8tLU3VEvkshxxGxiVUqNGbyaOcizDxwUoAwHpcx41cwpsSzjLJ82rqS5sr6OI/UAgCuD78YBwAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKIfkAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKCecPN5fq939/ub1Y3rh4+Gwv32b/vp8vLk3/pxe2T29pI3w5fZ+vzs8vjsDvd3t7vc7Z8z+ePwPAgCAK5eVPIY/d/d3z33f9/3z035nR4dx+Ke7m/v9zvg3ZwhrzZu1xAAAD89JREFUhHJM+Xg4TB9UEsw0G6GIAwAArlFmzWNMGzevH2NumFKI8W718DnVLeZk8Pl4c7+/ef1YRjgVNqZ/1cOnOf6XIX9oZY8pfIyfAgAAX4OaPMZgMf+7e5grDd4/6+7J/d2zH1n85GHGlL7v+4/3zylPDEWUaQaU8DGVRrjnAgDAFxKseYytu1nz6PterHb0/VTnODy+m6UR4yNi8rg57Hf3d89vjzcHOdYIM2DNRqg7CAAAuC7B5DHUMFKTh9Htw+irMdwTefOTx8fDYb873N0OycPpu+qO1ks5xuzR2wMAgC8jkDzmjpxJyWO+O3N4fB8ywdPLVDURk8cwzOPDmDym4GLe3Dk8Pr9WalVj6SlCbw8AAL4IPXnYdYunF6/nh905dM4Bh8f3tzursHF/96z0MJ16ks7JY/mPaPKwkgplDwAAvgQ1eRjPngz5wOm0IdQ8DtXN/X53eHyYMsHt29TnNPpsy/ip5OQxz4PW6QQAAFyhcPK4ObhP1fa91s/j5XnIGYe728OcOax6idPDtO/7pSiSebdlHPjppfd7swIAgKsVeqp2avhTn21xvpN0qmrMX/6RkDzSah7jmOcZGFIOvT0AALh6ej+Pl+c34ZvE+j45eZiBYMvkITxxY30RCAAAuFqp32Gqdi81ny6xkseYBoa+n6n9POJ3W8z7LAblq0cAAMBVyf329L5Pq3mMw7h3QNJrHs/G8HPymPqCSP1J+WIxAACu33mSx3hDxA8B724NIyN5hGLHIOFHbgEAwCWdI3kM903Ezhlebww3edzOX4RqfTWZ36s0NMM8ZAsAwJUKJw8AAIAtkTwAAEA5JA8AAFAOyQMAAJRD8gAAAOWQPAAAQDkkDwAAUI6aPP4DAAD477///vuvUPL4HwAA+PFIHgAAoBySBwAAKIfkAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKAckgcAACjn2pLHvz+/qsGvP//Ou+gAAKC4a0oe//78qqrff8+/0AAA4EKuKHn8/U2dAwCAb+56ksff39WvP39+V9xsAQDg+7qq5GHca/n7mxsvAAB8P1eVPMw6B/deAAD4hq4qeZhVDpIHAADf0PUkj//9/b307vj35xfBAwCA7+eKkof5ZR7EDgAAvqWrSh4AAOCbI3kAAIBySB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKIfkAQAAyiF5AACAckgeAACgHJIHAAAo56qSx9/fOT8YZ/y+XPpvzC0fShjemMLvvwkjnz9iDZ07n8ta4IfzAADfzhUlj7+/pxb7359fCW3uvz+/8hrmf39+pUcIaybSZujv76r69efPbz95rA0Qf91xAQDwxV1R8jAktfS5Lfrf3zklhH9/fpmNfvzD//78+v33f0JaOCF5ZM4zAABX7zqTR9K1fmaL/vf3WJBIu4/hzIITRNI/eErySJ8oAABfxDUmj+GuRU4vjJTh//42O2DEs405hNB7I+lza+Zznlf6eQAAvqGrSx7//vxa0eAmhBXnxkXCfQyzN+rf9TWPzPlMHxkAAF/PdSWPdbHjf//LrWH8L7sHxdL99bQ5yY0SdPQAAHwv15Q8cgsCi6SnVszRpz2sYn4yOS6EBs57uiZ/eAAArt31JA/zayxSvkNjRfcJ4yMJH8j7dhFhAYb5z53PFcsFAMCXcT3JAwAAfH8kDwAAUA7JAwAAlEPyAAAA5ZA8AABAOSQPAABQDskDAACUQ/IAAADlkDwAAEA5JA8AAFAOyQMAAJRTLnkAAAD8VyZ5AAAAbI7kAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKIfkAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKCccPJ4f6129/ub14/phY+Hw/72bfrr8/Hm3vhzemX39JI2wpfb+/3u8PjuDPR2t7vf75wxCz4eDnt79gAAwHXLSh7Dn7v7u+e+7/v++Wm/s6PDOPzT3c39fmf8mzOENUI5pox5YhdMMOaQJA8AAL6MzJrHmDZuXj/G3DClEOPd6uFzqlvM0eHz8eZ+f/P6sYxwKmxM/6qHT3P8L0OqsMseL7fGkH7yGINRJK8AAIDLUZPHGCzmf3cPY8FD+GfdPbm/e/Yji588zJjS933/8f45RYehiDLNgBE+SB4AAHxxwZqHcjtDqnb0/VTnODy+m6UR4yNi8rg57Hf3d89vjzcHOdZ4yYbkAQDAlxVMHkNLn5o8jG4fRl+NISu8+cnj4+Gw3x3ubofk4fRddUc7TIvkAQDAFxdIHlN/0rTkMd+dOTy+DxHh6WUKB2LyGIZ5fBiTxxRczJs7h8fn18q44TImocg/kgcAAFdLTx523eLpxev5YXcOnXuMHh7f3+6swsb93bPSw3TqSTonj+U/pOQhzyHPtgAA8GWoycN49mTIB06nDaHmcahu7ve7w+PDVL24fZv6nEafbRk/RfIAAOBbCyePm4P7VG3fa/08Xp6HnHG4uz3MmcOqlzg9TPu+X4oiCXdbxgGWmyl+8hgnGvsKMgAAcCGhp2qnhj/12RbnO0mnqsb85R8JySNU8yB5AADw5en9PF6e34RvEuv75ORhPopC8gAAAH36d5iq3UuNTqZ28rCecU3t58HdFgAAvrXcb0/v+7SaxzjM/N0b2gjVmsezMTzJAwCAb+I8yUNNAO/usyr5ySPhH8kDAIArdY7kMdw3kX7sbf6qsZmbPG7nL0K1vposETUPAACuWzh5AAAAbInkAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAAIBy1OTxHwAAwH///ffff4WSx/8AAMCPR/IAAADlkDwAAEA5JA8AAFAOyQMAAJRD8gAAAOWQPAAAQDkkDwAAUA7JAwAAlEPyAAAA5ZA8AABAOVeVPP7+rka//vzLGDpt+H9/flVV3kfMDyUMb0zh99+Ekc8fsYZeNZ8AAHwNV5Q8/v6eWuB/f37lNbh/fye09f/+/Mprxf/9+ZUeIayZTluAv7+r6tefP+68Z88nAABfxxUlD8Oa6BEdPrdFTxmnNXYzQMQ//O/Pr99//yekJpIHAOAbu87kkVTDWDitvj5UTov+9/dYkEi76eHMctosCR8keQAAvrVrTB7DXYiUtnfu6pHdzyPtXsgSCeJZyBxC6L2R9Lk18wkAwFdydcnj359fK9rbzCJJSrhx7pck3Hsxe6P+XV/zyJxPAAC+kutKHutix//+l9spI7eGkT+BpbvsaXOSG6kAALhu15Q81l/g5z2Fkji8OTt5XV6z4kJo4NzlAgDg2l1P8jC/niPlOzFyu0Os6D5hfCThA3nfRiIs8LC8dPMAAHxn15M8AADA90fyAAAA5ZA8AABAOSQPAABQDskDAACUQ/IAAADlkDwAAEA5JA8AAFAOyQMAAJRD8gAAAOWQPAAAQDnlkgcAAMB/ZZIHAADA5kgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKIfkAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKIXkAAIBySB4AAKAckgcAACiH5AEAAMoJJo+Ph8N+d189fJaaGwAA8L2lJ4/312p3v5f+3T1PH3h+Egew/t28fpx7oQAAwJXKTR52bni5tZMHAABACMkDAACUoyaPtzvzFsntW9LdFgAAgBBqHgAAoJzNksfn402sb+ny7/D4fs6FAgAAV2rbZ1sc40fIGQAAYJCQPMZ+Hqne7uaoYSWPz8cbIggAAD+cljyMCkf18Ol2ONXLHlNYOTy+W8ljuC/Dl3kAAPCzrfoOU7Vj6ZRX7Bs0Q6ljzC58IyoAAD9YRvJ4u5uKFlryGAsbu6eX4W+7n4dVDgEAAD9RevIYvhn99q1fEob9hejTV6cvicTtYTo9/8I9FwAAfqjU5DE/NLt02rBrHlNHELMvqv9si59OAADAD5KWPOYbJdXN/f72Tbnb8vl4M91nGYw5w3yRJ1wAAPjJ4t+e/vTS9x/vb483Y9RYHrVVv9LDfBCGnAEAAGbBmgcAAMCmSB4AAKAckgcAACiH5AEAAMoheQAAgHJIHgAAoBySBwAAKIfkAQAAyiF5AACAckgeAACgHJIHAAAoh+QBAADKyUgex7au26PyTmVqWueF4dXO/2TXVJUy0jW6xpvOOG/+RLomY8rHthbnX3tXH3l4TO6g9kgyPgsAwHXaLHlMLaLVOnaNnAOCstvWrpk+Os6fNRVldFnBIzy0GDyUySaFh3Egb4ULwWoD3rIt69Nerb2xZglAAIB1QsnDa4G0kODVPLpQ6zWN2nrl2Narix9e0yk37ympR2lU9bkTFt2f0PLR6Cptut5MHs6rdXvUQ02+eW78jaMVqKbXtWEAAAiLJA+zSXIuwY3mXah52A3k+NF4lFHb/pDE5GF/ImsaerHBWildUzWdO3FjCK+5VuZDrHlMw8YWLjcT+KlKGYO9mrnzAwBYZbPk4SSHsZ0cR2F+NNBk5d0BMT9mTzzeKyMv8oyfUEKClTzq2m3H5yGEpZOShzR7dds2VdNNg8vraVoNmaswNXm4r1L1AACssUnykD87Jo/x/oOVPHQrk4dRVbBuU3gjHt4S51sthAxtrPy2X/Nwx2SFr9gdH3kGllU9L6oxiUDfC7nI5BeIQv08tPsrJA8AwBob9PMQBhuv0dXksXnNw08e4ySsUQ6vBxZLSyR1e1R62Er9PHqrObdiiDMOOc0sWcVdd+LMnRgAwj1slvGTPAAAW9iy5mEOMHd5KFPzsNt+OXmIFQl7NHIMMC/73fkTax7WO6uTh1ksab20ZHxuWv51OSDSt3d+m+QBANjCNsmja8Y20mgWj21dVcPDGKHvtji99bJnZAw8RtwQOlck1zyE5lbpxTFP3Z09/QaQFr2GiYyz2bRz79wlTKmPnjjhbd3dFm/tSv1U6GEKAFhly2db5gG8zhTzmKZ2bBm19wCH0grql9juZ6ymNLFbp/i6eCfDCVLR5BFsofUyixnflpY/pbRx6rMt1hJN8dEbMxUPAMA6W3yfx/hIh3857ZmbYT8QSH0npU9Kc+kGonCUCT/KavwVCkHil5YpVZNgLwo9eQhFitBcreBMyKipqAt02p0dAAAyah4OM0WIbZYfU4wLZWHQdd/AYb/hBZR48jCyg3lBH2nfp3qIXPNI+RLV4FIZ3B6mK7vhAgBwFTK+Pf2SUppoAABw9b5I8gAAAN8CyQMAAJRD8gAAAOWQPAAAQDkkDwAAUA7JAwAAlEPyAAAA5ZA8AABAOSQPAABQDskDAACUQ/IAAADl/D9Le6Psvv15pAAAAABJRU5ErkJggg==" alt="" />
--------------------------
桶排都过不了,我彻底没办法了...
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader; public class Main{ public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader reader=new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(reader.readLine());
int book[]=new int[151];
String ss[]=reader.readLine().split(" ");
for(int i=0;i<n;i++) book[Integer.parseInt(ss[i])]++; StringBuilder sb=new StringBuilder();
for(int i=0;i<book.length;i++){
while(book[i]-->0) sb.append(i).append(" ");
} System.out.println(sb.toString());
} }
题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=1080
NYOJ题目1080年龄排序的更多相关文章
- 【剑指offer】员工年龄排序
典型的以空间换时间问题,思路非常重要! /* 员工年龄排序 员工可能有几万名,要求时间复杂度为O(n) 思路:员工的年龄必定在一个范围内,比方0-99,那么我们建立一个大小为100的辅助数组,然后遍历 ...
- Python面试题目之字典排序
按照字典的内的年龄排序 待排序的字典 d1 = [ {'name':'alice', 'age':38}, {'name':'bob', 'age':18}, {'name':'Carl', 'age ...
- 九度oj 题目1202:排序
题目1202:排序 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:28802 解决:9408 题目描述: 对输入的n个数进行排序并输出. 输入: 输入的第一行包括一个整数n(1<=n ...
- 【九度OJ】题目1202:排序 解题报告
[九度OJ]题目1202:排序 解题报告 标签(空格分隔): 九度OJ [LeetCode] http://ac.jobdu.com/problem.php?pid=1202 题目描述: 对输入的n个 ...
- 【九度OJ】题目1080:进制转换 解题报告
[九度OJ]题目1080:进制转换 解题报告 标签(空格分隔): 九度OJ 原题地址:http://ac.jobdu.com/problem.php?pid=1080 题目描述: 将M进制的数X转换为 ...
- 九度oj 题目1374:所有员工年龄排序
题目描述: 公司现在要对所有员工的年龄进行排序,因为公司员工的人数非常多,所以要求排序算法的效率要非常高,你能写出这样的程序吗? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入的第一行为一 ...
- 剑指offer-第二章排序之年龄排序
题目:对某个公司的人的年龄(0-99)进行排序,该公司的总人数为几万人.要求时间复杂度为O(n),可以辅助O(n)的空间. 思路:实现函数为void SortAge(int ages[],int le ...
- 九度0J 1374 所有员工年龄排序
题目地址:http://ac.jobdu.com/problem.php?pid=1374 题目描述: 公司现在要对所有员工的年龄进行排序,因为公司员工的人数非常多,所以要求排序算法的效率要非常高,你 ...
- NYOJ 8 一种排序(comparator排序)
一种排序 时间限制: 3000 ms | 内存限制: 65535 KB 难度: 3 描述 现在有很多长方形,每一个长方形都有一个编号,这个编号可以重复:还知道这个长方形的宽和长,编号.长.宽都 ...
随机推荐
- android ListView嵌套GridView显示不全问题
只需重写GridView即可:public class MyGridView extends GridView{ public MyGridView(android.content.Context c ...
- 学习高博SLAM(1)
这几天按照高博的博客做了一起做RGB-D SLAM (1)和(2) ,,其中大部分步骤都没问题 开发环境是ubuntu14.04+indigo 有几个问题就是: (1)我的电脑不能加载PPA,原因是: ...
- Codeforces 710 D. Two Arithmetic Progressions
Description \(x=a_1k+b_1=a_2l+b_2,L\leqslant x \leqslant R\) 求满足这样条件的 \(x\) 的个数. Sol 扩展欧几里得+中国剩余定理. ...
- Tip
Windows 开栈命令 -Wl,--stack=1000000000 //stack-size B Linux 开栈命令 -ulimit -a -ulimit -s size //stack-siz ...
- mapReduce编程之google pageRank
1 pagerank算法介绍 1.1 pagerank的假设 数量假设:每个网页都会给它的链接网页投票,假设这个网页有n个链接,则该网页给每个链接平分投1/n票. 质量假设:一个网页的pagerank ...
- ModelAndView的介绍
ModelAndView的构造方法有7个.但是它们都是相通的.这里使用无参构造函数来举例说明如何构造ModelAndView实例. ModelAndView类别就如其名称所示,是代表了MVC Web程 ...
- CentOS 下安装xdebug
在CentOS 6.x 的系统中,是集成xdebug 的, yum install PHP-pecl-xdebug 如果是CentOS.5 也可能通过安装安装 epel 来安装 rpm -ivh ht ...
- Tomcat 7最大并发连接数的正确修改方法
这是个很简单的问题,但是搜了一圈,发现大家都写错了.所以这里总结一下: 几乎所有的中文网页都介绍,要修改Tomcat的默认最大并发连接数,应该进行如下设置(实际上这些步骤是错误的): -------- ...
- Read N Characters Given Read4 I & II
The API: int read4(char *buf) reads 4 characters at a time from a file. The return value is the actu ...
- Sublime Text编辑工具带有 PEP 8 格式检测插件
Sublime Text编辑工具带有 PEP 8 格式检测插件