Mike的农场 (BZOJ 4177)
题目大意:
给N个东西分AB类,分到A类和B类分别得到相应的钱记为A[i],B[i],然后有一些冲突关系<x,y,z>,如果物品x,y不同类需要付出z的钱。还有一些外快<S,x,y>,当某个集合里的元素都是x类的时候得到y的钱。 求最大收益。
思路:
1.如果只考虑冲突关系,那么就是非常裸的最小割,显然这题应该在最小割的基础上加点东东. 然后集合附加权貌似是个比较经典的东西(虽然我也是做了这题才知道...),我这种蒟蒻肯定不能独立AC啦,于是愉快地看了题解。貌似和BZOJ3438是差不多的,所以搜这题的题解的时候可以搜BZOJ3438的题解。
2.总结了一下前人经验发现大致有两种构图方法。其中方法二貌似只有一个博客里看到,感觉比较厉害,而且比较好理解。。
共同点:对于冲突<x,y,z>,连边<x,y,z> <y,x,z> (格式为<点,点,容量>).
方法一:
先把所有的钱加起来减去最小割就是答案。 对于附加权,A类集合搞一个新的点P,从P向集合中的点连边,容量无穷大,从S向P连边容量为附加权. B类集合同理,不过是从集合中的点连边到P,容量无穷大,从P到T连边容量为附加权。 对于每个点x,连边<S,x,A[i]> <x,T,B[i]>.
下面是本人YY的大致证明:其他的就不多说了,证明附加权的部分。
对于A类集合点P,如果边<S,P>被割掉了,那么必定有集合中的某个点x,<S,x>也被割掉了(反证:如果不成立,那么完全没必要割<S,P>),实际意义是集合中的元素不全是属于A类,所以扣掉代价,也就是这条边的容量。
对于B类集合点P,如果边<P,T>被割掉了,那么必定有集合中的某个点x,从S有路到x(反证:如果不成立,那么完全没必要割<P,T>),实际意义是集合中的元素不全是属于B类,所以扣掉代价,也就是这条边的容量。
方法二:
转化为最大权闭合图。假设所有点都被分到A类,所以把A[i]都加起来,还要加上A类集合的附加权.然后构造带权闭合图。一个点的点权为B[i]-A[i],实际意义是把它从A类变成B类的代价。 然后考虑附加权。 A类集合的附加权:搞一个新的点P,P的点权是附加权的相反数,从集合中的元素连边到P, 根据闭合图的定义,如果集合中的某个元素x选来了,也就是x变成了B类,那么P点也必须选来,所以就把相应的钱扣掉。 B类集合的附加权:搞一个新的点P,P的点权是附加权,从P连边到集合中的元素,表示如果要赚P的钱,必须把集合中的元素都变成B类。 然后就是最大权闭合图的做法了,具体不再赘述。
退役好久没做题,dinic的写不对了。。
Mike的农场 (BZOJ 4177)的更多相关文章
- bzoj 4177 Mike的农场
bzoj 4177 Mike的农场 思维有些江化了,一上来就想费用流做法,但其实就是个最小割啊. 考虑先将所有的收益拿到,再减去不能拿的以及三元组 \((i,j,k)\) 产生的代价.即,先让 \(a ...
- BZOJ 4177: Mike的农场( 最小割 )
显然是最小割... 对于规律(i, j, k) i,j 互相连边, 容量为k 对于规则(S, a, b) 新建一个点x, x与S中每个点连一条弧, 容量+∞, 然后再根据a决定x与源点或汇点连边. 跑 ...
- bzoj4177: Mike的农场
类似于最大权闭合图的思想. #include<cstdio> #include<cstring> #include<iostream> #include<al ...
- 【BZOJ4177】Mike的农场 最小割
[BZOJ4177]Mike的农场 Description Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中 ...
- 【bzoj4177】Mike的农场 网络流最小割
题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i] ...
- Mike的农场
题目 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i]元, ...
- Mike的农场 BZOJ4177
分析: 最小割,不选则割的建模题...(然而一开始我当成了费用流,简直丧心病狂...最后想到了最小割...) 对于条件一,直接建一条双向边就可以了,并且不计入sum中,因为这是作为费用的存在,让它跑出 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- OI 刷题记录——每周更新
每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...
随机推荐
- LINQ to SQL:Where、Select/Distinct
Where 操作 适用场景:实现过滤,查询等功能. 简单说明:与 SQL 命令中的 Where 作用相似,都是起到范围限定也就是过滤作用的 ,而判断条件就是它后面所接的子句. Where 操作包括 3 ...
- SQL Server 利用批量(batchsize)提交加快数据生成/导入
在最小化日志操作解析,应用的文章中有朋友反映生成测试数据较慢.在此跟大家分享一个简单的应用,在生成数据过程中采用批量提交的方式以加快数据导入. 此应用不光生成测试数据上,在BCP导入数据中,复制初始化 ...
- VS2010调试Qt5的相关设置
1.windows环境,下载离线安装包安装: 2.安装Qt5 Visual Studio Add-in并安装: 3.环境变量里设置QTDIR=D:\LIB\Qt\Qt5.3.2\5.3\msvc201 ...
- MySQL中select * for update锁表的问题
MySQL中select * for update锁表的问题 由于InnoDB预设是Row-Level Lock,所以只有「明确」的指定主键,MySQL才会执行Row lock (只锁住被选取的资料例 ...
- Prince2的七大原则(7)
[Prince2科普]Prince2的七大原则(7) 2016-12-12 光环组织级项目管理 按照惯例我们先来回顾一下,PRINCE2七大原则分别是指:持续的业务验证,经验学习,角色与责任,按阶段管 ...
- Android Layout XML属性
转载自并做少量添加:http://www.cnblogs.com/playing/archive/2011/04/07/2008620.html Layout对于迅速的搭建界面和提高界面在不同分辨率的 ...
- 【转】Struts1.x系列教程(6):Bean标签库
转载地址:http://www.blogjava.net/nokiaguy/archive/2009/01/archive/2009/01/archive/2009/01/archive/2009/0 ...
- CentOs 设置静态IP 方法
在做项目时由于局域网采用自动获取IP的方式,导到每次服务器重启主机IP都会变化. 为了解决这个问题,需要设置静态IP. 1.修改网卡配置 编辑:vi /etc/sysconfig/network-sc ...
- [HIHO1079]离散化(线段树、染色)
题目链接:http://hihocoder.com/problemset/problem/1079 MD坑爹,线段查询的时候左闭右开.插完挨个点找一遍扔set里,注意没染色的情况. #include ...
- 系统收到了多个不同的 Content-Disposition 标头。为了避免遭到 HTTP 响应拆分攻击,这种情况是不允许的。
今天使用Struts2进行上传下载的时候发现了一个现象 我的Struts2配置文件 <action name="share_ExportExcel" class=" ...