题目链接http://acm.hdu.edu.cn/showproblem.php?pid=2586

题目大意:在一个无向树上,求一条链权和。

解题思路

0

|

1

/   \

2      3

设dist[i]为i到根0的链和,求法(Dfs过程中dist[v]=dist[u]+e[i].w)

对于树中任意两点形成的链,可以通过LCA最近公共祖先剖分。

比如2->3,就可以经过LCA点1:  2->1->3

链和=dist[u]+dist[v]-2*dist[LCA[u,v]]

(0-1-2)+(0-1-3)-2*(0-1)=(2-1-3),有点容斥原理的味道。

LCA比较快的是Tarjan离线法,把全部query也做成一个无向树,离线处理。

过程分为两个stage,stage 1对连接树处理,stage 2对query树处理。

两个stage可以颠倒。正写法 倒写法。在Tarjan(u)中,并查集find(v),可以获得LCA。

LCA存储比较头疼,由于LCA是双向共享的。可以建个ancestor数组,索引是查询序号。

也可以直接存在query树的链式前向星中。

本题双向建一个无向树,任意选择一个起点作为root做LCA都可以。

#include "cstdio"
#include "cstring"
#define maxn 40005
#define maxm 205
int head[maxn],qhead[maxn],dist[maxn],tot1,tot2,f[maxn],vis[maxn],ancestor[maxn];
struct Edge
{
int to,next,w;
}e[maxn*];
struct Query
{
int from,to,next,idx;
}q[maxn*];
void addedge(int u,int v,int w)
{
e[tot1].to=v;
e[tot1].w=w;
e[tot1].next=head[u];
head[u]=tot1++;
}
void addquery(int u,int v,int idx)
{
q[tot2].from=u;
q[tot2].to=v;
q[tot2].next=qhead[u];
q[tot2].idx=idx;
qhead[u]=tot2++;
}
int find(int x) {return x!=f[x]?f[x]=find(f[x]):x;}
void Union(int u,int v)
{
u=find(u),v=find(v);
if(u!=v) f[v]=u;
}
void LCA(int u)
{
vis[u]=true;
f[u]=u;
for(int i=head[u];i!=-;i=e[i].next)
{
int v=e[i].to,w=e[i].w;
if(!vis[v])
{
dist[v]=dist[u]+w;
LCA(v);
Union(u,v);
}
}
for(int i=qhead[u];i!=-;i=q[i].next)
{
int v=q[i].to;
if(vis[v]) ancestor[q[i].idx]=find(v);
//or storage e[i].lca=e[i^1].lca=find(v)
}
}
int main()
{
//freopen("in.txt","r",stdin);
int T,n,m,u,v,c;
scanf("%d",&T);
while(T--)
{
tot1=tot2=;
memset(head,-,sizeof(head));
memset(qhead,-,sizeof(qhead));
memset(vis,,sizeof(vis));
dist[]=;
scanf("%d%d",&n,&m);
for(int i=;i<n-;i++)
{
scanf("%d%d%d",&u,&v,&c);
addedge(u,v,c);
addedge(v,u,c);
}
for(int i=;i<m;i++)
{
scanf("%d%d",&u,&v);
addquery(u,v,i);
addquery(v,u,i);
}
LCA();
for(int i=;i<tot2;i=i+)
{
int u=q[i].from,v=q[i].to,idx=q[i].idx;
printf("%d\n",dist[u]+dist[v]-*dist[ancestor[idx]]);
}
}
}

HDU 2586 (LCA模板题)的更多相关文章

  1. [hdu 2586]lca模板题(在线+离线两种版本)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 在线版本: 在线方法的思路很简单,就是倍增.一遍dfs得到每个节点的父亲,以及每个点的深度.然后 ...

  2. hdu - 2586 (LCA板子题)

    传送门 (这次的英文题面要比上一个容易看多了) (英语蒟蒻的卑微) 又是一个很裸的LCA题 (显然,这次不太容易打暴力咧) (但听说还是有大佬用dfs直接a掉了) 正好 趁这个机会复习一下LCA 这里 ...

  3. hdu 2586 How far away?(LCA模板题+离线tarjan算法)

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  4. HDU - 2586 How far away ?(LCA模板题)

    HDU - 2586 How far away ? Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & ...

  5. HDU 2586——How far away ?——————【LCA模板题】

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  6. HDU 2138 Miller-Rabin 模板题

    求素数个数. /** @Date : 2017-09-18 23:05:15 * @FileName: HDU 2138 miller-rabin 模板.cpp * @Platform: Window ...

  7. HDU 2586 How far away ?【LCA模板题】

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2586 题意:给你N个点,M次询问.1~N-1行输入点与点之间的权值,之后M行输入两个点(a,b)之间的最 ...

  8. HDU 2586 How far away ? 离线lca模板题

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  9. HDU 2586 ( LCA/tarjan算法模板)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 题意:n个村庄构成一棵无根树,q次询问,求任意两个村庄之间的最短距离 思路:求出两个村庄的LCA,d ...

随机推荐

  1. JavaScript基础——数据类型

    JavaScript使用数据类型来确定如何处理被分配给一个变量的数据.变量的类型决定了你可以对变量进行什么操作,如循环或者执行.下面描述了最常用的变量类型. 字符串(String):此数据类型将字符数 ...

  2. sql server 的cpu使用率过高的分析

    有哪些SQL语句会导致CPU过高? 1.编译和重编译 编译是 Sql Server 为指令生成执行计划的过程.Sql Server 要分析指令要做的事情,分析它所要访问的表格结构,也就是生成执行计划的 ...

  3. EasyUi – 2.布局Layout + 3.登录界面

    1.页面布局 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="index.a ...

  4. 【Java环境变量的配置问题】

    首先是JVM.JRE.JDK三者之间的关系: java的跨平台性依赖于Java虚拟机:jvm(Java Virtual Machine),而jre(Java Runtime Environment,中 ...

  5. SQL SERVER 索引之聚集索引和非聚集索引的描述

    索引是与表或视图关联的磁盘上结构,可以加快从表或视图中检索行的速度. 索引包含由表或视图中的一列或多列生成的键. 这些键存储在一个结构(B 树)中,使 SQL Server 可以快速有效地查找与键值关 ...

  6. 最长公共子序列(LCS)和最长递增子序列(LIS)的求解

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  7. 推荐一些顶级的Android开发书籍(转)

    本帖对Android开发菜鸟和中级老兵同样适用,因为本帖重点列出了那些最常用的Android开发资源. 推荐书籍 你或许觉得,都现在了,再去看个什么书来学习Android开发,这方法应该早就过时了.没 ...

  8. visio如何让动态连接线的单箭头变成双箭头?

    1 选中线,右击,然后选择“格式”,“线条” 2 3

  9. [liferay6.2]input-date日期控件

    input-date日期控件 liferay6.2中默认提供了一个简单的日期控件input-date,调用代码片段如下: <% Calendar calendar = Calendar.getI ...

  10. objective-c常用方法列表(总结)

    第1章 Objective-C学习环境准备 1.1 Objective-C基础 1.1.1 Objective-C的发展历程 1.1.2 Objective-C语言的特点 1.1.3 技术架构 1.2 ...