zoj1770 
x1- x2 <= t1
x3 - x5 <= t2
x2 - x3 <= t3
....
可以用最短路的方法来求的解。
最短路的松弛操作,和这些式子很相近。
如果无答案,那么说明存在负环。不然就有解,但是解不是唯一的,因为任意一组解加上k就又是一组解。
Burn the Linked Camp

Time Limit: 2 Seconds      Memory Limit: 65536 KB

It is well known that, in the period of The Three Empires, Liu Bei, the emperor of the Shu Empire, was defeated by Lu Xun, a general of the Wu Empire. The defeat was due to Liu Bei's wrong decision that he divided his large troops into a number of camps, each of which had a group of armies, and located them in a line. This was the so-called "Linked Camps".

Let's go back to that time. Lu Xun had sent many scouts to obtain the information about his enemy. From his scouts, he knew that Liu Bei had divided his troops into n camps, all of which located in a line, labeled by 1..n from left to right. The ith camp had a maximum capacity of Ci soldiers. Furthermore, by observing the activities Liu Bei's troops had been doing those days, Lu Xun could estimate the least total number of soldiers that were lived in from the ith to the jth camp. Finally, Lu Xun must estimate at least how many soldiers did Liu Bei had, so that he could decide how many troops he should send to burn Liu Bei's Linked Camps.

Input:

There are multiple test cases! On the first line of each test case, there are two integers n (0<n<=1,000) and m (0<=m<=10,000). On the second line, there are n integers C1��Cn. Then m lines follow, each line has three integers i, j, k (0<i<=j<=n, 0<=k<2^31), meaning that the total number of soldiers from the ith camp to the jth camp is at least k.

Output:

For each test case, output one integer in a single line: the least number of all soldiers in Liu Bei's army from Lu Xun's observation. However, Lu Xun's estimations given in the input data may be very unprecise. If his estimations cannot be true, output "Bad Estimations" in a single line instead.

Sample Input:

3 2
1000 2000 1000
1 2 1100
2 3 1300
3 1
100 200 300
2 3 600

Sample Output:

1300

Bad Estimations
 
 
方法:
这题有许多条件。最明显的就是i~j至少有k人。那么 1)s[j]-s[i-1]>=k一组方程;
然后对于每一个ci>=0又是一组方程。i~j人数最多不能超过最大上限,s[j]-s[i-1]<=sum[j]-s[i-1];又是一组。还有最后一组方程就是每一个兵营人数不能超过上限,s[i]-s[i-1]<=ci;
根据这些方程建图,跑spfa,如果一个点进入队列的次数多于n次,说明出现了环。
代码:
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#define INF 100000007
#define ll long long
using namespace std;
const int MAXN = ;
struct node
{
int to;
int val;
int next;
}edge[MAXN*MAXN/];
int pre[MAXN],vis[MAXN],ind,n,m;
ll a[MAXN];
ll k,sum[MAXN],in[MAXN];
void add(int x,int y,int z)
{
edge[ind].to = y;
edge[ind].val = z;
edge[ind].next = pre[x];
pre[x] = ind ++;
}
ll spfa()
{
ll dis[MAXN];
queue<int>q;
for(int i = ; i <= n; i++){
dis[i] = INF;
vis[i] = ;
}
in[] = ;
dis[] = ;
vis[] = ;
q.push();
while(!q.empty()){
int tp = q.front();
q.pop();
vis[tp] = ;
for(int i = pre[tp]; i != -; i = edge[i].next){
int t = edge[i].to;
if(dis[t] > dis[tp] + edge[i].val){
dis[t] = dis[tp] + edge[i].val;
if(!vis[t]){
in[t] ++;
if(in[t] > n){
return -;
}
q.push(t);
}
}
}
}
return dis[n];
}
int main()
{
while(scanf("%d%d",&n,&m) != EOF){
ind = ;
memset(pre,-,sizeof(pre));
memset(sum,,sizeof(sum));
for(int i = ; i <= n; i++){
scanf("%lld",&a[i]);
add(i,i-,a[i]);
add(i-,i,);
sum[i] = sum[i - ] + a[i];
}
for(int i = ; i <= m; i++){
ll x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
add(y,x-,sum[y]-sum[x-]);
add(x-,y,-z);
}
memset(in,,sizeof(in));
ll ans = spfa();
if(ans == -){
cout<<"Bad Estimations"<<endl;
}
else {
cout<<-ans<<endl;
}
}
return ;
}

zoj2770 差分约束系统的更多相关文章

  1. POJ1201 Intervals(差分约束系统)

    与ZOJ2770一个建模方式,前缀和当作点. 对于每个区间[a,b]有这么个条件,Sa-Sb-1>=c,然后我就那样连边WA了好几次. 后来偷看数据才想到这题还有两个隐藏的约束条件. 这题前缀和 ...

  2. UVA11478 Halum [差分约束系统]

    https://vjudge.net/problem/UVA-11478 给定一个有向图,每条边都有一个权值.每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的 ...

  3. BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5395  Solved: 1750[Submit][Status ...

  4. ACM/ICPC 之 差分约束系统两道(ZOJ2770-POJ1201)

    当对问题建立数学模型后,发现其是一个差分方程组,那么问题可以转换为最短路问题,一下分别选用Bellmanford-SPFA解题 ZOJ2770-Burn the Linked Camp //差分约束方 ...

  5. UVA 11374 Halum (差分约束系统,最短路)

    题意:给定一个带权有向图,每次你可以选择一个结点v 和整数d ,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值为正,且尽量大.若无解,输出结果.若可无限大,输出结 ...

  6. Burn the Linked Camp(bellman 差分约束系统)

    Burn the Linked Camp Time Limit: 2 Seconds      Memory Limit: 65536 KB It is well known that, in the ...

  7. zoj 2770 Burn the Linked Camp (差分约束系统)

    // 差分约束系统// 火烧连营 // n个点 m条边 每天边约束i到j这些军营的人数 n个兵营都有容量// Si表示前i个军营的总数 那么 1.Si-S(i-1)<=C[i] 这里 建边(i- ...

  8. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

  9. POJ 3169 Layout 差分约束系统

    介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...

随机推荐

  1. CF 672C Recycling Bottles[最优次优 贪心]

    C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  2. AppStore ipa (苹果内购)笔记

    内购示意图 准备条件 苹果的开发者证书,已经为应用启用App内购,并在Xcode更新配置文件 itunes store设置 itunes中创建App及其它设置 参考:iOS应用程序内购/内付费(一)  ...

  3. Unity游戏暂停之Update与FixedUpdate区别

    游戏暂停 示例程序 下面这段代码演示游戏暂停 using UnityEngine; using System.Collections; public class GamePauseTest : Mon ...

  4. Java面向对象之接口

    什么是接口:接口是一种规范和标准,他们可以约束类的行为,是一些方法特征的集合 语法: [修饰符] interface 接口名 extends 父接口1,夫接口2....... class 类名 ext ...

  5. java 22 - 6 多线程之线程调度和设置线程的优先级

    线程调度 假如我们的计算机只有一个 CPU,那么 CPU 在某一个时刻只能执行一条指令,线程只有得到 CPU时间片,也就是使用权,才可以执行指令. 那么Java是如何对线程进行调用的呢? 线程有两种调 ...

  6. https证书提供商

    http://www.itrus.com.cn/verisignchina/About/aboutitrus/Index.html

  7. stl学习(三)crope的用法

    转载自http://blog.csdn.net/iamzky/article/details/38348653 曾经我不会写平衡树……于是在STL中乱翻……学到了pb_ds库中的SXBK的斐波那契堆. ...

  8. h5中websocket

    ajax的数据传输是单向的,客户端和服务端没有连接-----客户端建立连接发送请求----服务器端沿着建立的连接返回相应----断开连接 websocket则是可以在客户端和服务器端进行双向的数据接收 ...

  9. Theano3.2-练习之数据集及目标函数介绍

    来自http://deeplearning.net/tutorial/gettingstarted.html#gettingstarted 一.下载 在后续的每个学习算法上,都需要下载对应的文档,如果 ...

  10. 从.NET的宠物商店到Android MVC MVP

    1 一些闲话 记得刚进公司的时候,我们除了做常规的Training Project外,每天还要上课,接受各种技术培训和公司业务介绍.当时第一次知道QA和SQA的区别.Training Project时 ...