Manthan, Codefest 16
- import java.util.*;
- import java.io.*;
- public class Main {
- public static void main(String[] args) {
- Scanner cin = new Scanner (new BufferedInputStream (System.in));
- int a = cin.nextInt ();
- int b = cin.nextInt ();
- int c = cin.nextInt ();
- for (int i=0; a*i<=c; ++i) {
- int d = c - a * i;
- if (d % b == 0) {
- System.out.println ("Yes");
- return ;
- }
- }
- System.out.println ("No");
- }
- }
题意:问n!的后缀0的个数为m个的n的范围.
分析:出现0的一定是2*5产生的,而2的数字有很多,所以找到最小的数字之前5的总个数为m的.二分来找.
- #include <bits/stdc++.h>
- int number(int x) {
- int ret = 0;
- while (x) {
- x /= 5;
- ret += x;
- }
- return ret;
- }
- int main() {
- int m; scanf ("%d", &m);
- int left = 1, right = (int) 1e9;
- while (left < right) {
- int mid = left + right >> 1;
- if (number (mid) < m) left = mid + 1;
- else right = mid;
- }
- std::vector<int> ans;
- for (;;) {
- if (number (left) == m) ans.push_back (left);
- else break;
- left++;
- }
- int sz = ans.size ();
- printf ("%d\n", sz);
- for (int i=0; i<sz; ++i) {
- if (i > 0) putchar (' ');
- printf ("%d", ans[i]);
- }
- puts ("");
- return 0;
- }
Trie + DP C - Spy Syndrome 2
题意:有一句话被变成全小写并且删掉空格并且翻转单词,然后给出可能的单词.问原来可能的这句话.
分析:首先把单词插入到字典树上,这里为了节约内存把所有单词并在一起.结点保存了该单词在单词串的位置以便输出.然后文本串倒过来在字典树上DP搜索,最后正的输出,那么可以找到可行的一句话.
- #include <bits/stdc++.h>
- const int N = 1e4 + 5;
- const int M = 1e6 + 1e5;
- const int NODE = M;
- char text[N], words[M];
- int ch[NODE][26], val[NODE], pos[NODE];
- int n, m, sz;
- int nex[N], wl[N];
- int idx(char c) {
- return tolower (c) - 'a';
- }
- void trie_init() {
- memset (ch[0], 0, sizeof (ch[0]));
- sz = 1;
- }
- void trie_insert(char *str, int end, int id, int p) {
- int u = 0;
- for (int c, i=0; i<end; ++i) {
- c = idx (str[i]);
- if (!ch[u][c]) {
- memset (ch[sz], 0, sizeof (ch[sz]));
- val[sz] = 0; pos[sz] = 0;
- ch[u][c] = sz++;
- }
- u = ch[u][c];
- }
- val[u] = id; pos[id] = p;
- }
- void trie_query() {
- memset (nex, -1, sizeof (nex));
- memset (wl, 0, sizeof (wl));
- nex[n] = 0;
- for (int i=n; i>0; --i) {
- if (nex[i] == -1) continue;
- int u = 0;
- for (int c, j=i-1; j>=0; --j) {
- c = idx (text[j]);
- if (!ch[u][c]) break;
- u = ch[u][c];
- if (val[u] > 0) {
- wl[j] = pos[val[u]];
- nex[j] = i;
- }
- }
- }
- }
- int main() {
- scanf ("%d", &n);
- scanf ("%s", text);
- scanf ("%d", &m);
- trie_init ();
- for (int L=0, i=1; i<=m; ++i) {
- scanf ("%s", words + L);
- int len = strlen (words + L);
- trie_insert (words + L, len, i, L);
- L += len + 1;
- }
- trie_query ();
- int now = 0;
- while (now < n) {
- if (now > 0) putchar (' ');
- printf ("%s", words + wl[now]);
- now = nex[now];
- }
- puts ("");
- return 0;
- }
DFS + 二分 D - Fibonacci-ish
题意:在n个数找出一组数字满足fn = fn-1 + fn-2, 问最大长度.
分析:n的范围小,可以考虑n^2枚举两个起点,因为要考虑到个数的问题,这里我选择一种方便的写法:首先不考虑个数,只预处理两个数能否到下一个数字.然后考虑个数,类似DFS的vis功能,深搜时-1,回溯时+1
- #include <bits/stdc++.h>
- const int N = 1e3 + 5;
- const int MOD = 1e9 + 7;
- int a[N], A[N];
- int nex[N][N];
- int cnt[N];
- int ans;
- void DFS(int i, int j, int step) {
- if (step > ans) ans = step;
- int k = nex[i][j];
- if (k == -1) return ;
- else if (cnt[k] > 0) {
- --cnt[k];
- DFS (j, k, step + 1);
- ++cnt[k];
- }
- }
- int main() {
- int n; scanf ("%d", &n);
- for (int i=0; i<n; ++i) {
- scanf ("%d", &a[i]); A[i] = a[i];
- }
- std::sort (A, A+n);
- int m = std::unique (A, A+n) - A;
- for (int i=0; i<n; ++i) {
- a[i] = std::lower_bound (A, A+m, a[i]) - A;
- cnt[a[i]]++;
- }
- for (int i=0; i<m; ++i) {
- for (int j=0; j<m; ++j) {
- int k = std::lower_bound (A, A+m, A[i] + A[j]) - A;
- if (k >= m || A[i] + A[j] != A[k]) nex[i][j] = -1;
- else nex[i][j] = k;
- }
- }
- ans = 2;
- for (int i=0; i<m; ++i) {
- --cnt[i];
- for (int j=0; j<m; ++j) {
- if (cnt[j] <= 0) continue;
- --cnt[j];
- DFS (i, j, 2);
- ++cnt[j];
- }
- ++cnt[i];
- }
- printf ("%d\n", ans);
- return 0;
- }
二分查找 + RMQ + 组合数学 E - Startup Funding
题意:对于每一个li = i,找到一个ri,使得最大.从n个结果中选择k个,最小值的期望.
分析:第一个问题,考虑前缀max (vk)是递增的,考虑前缀min(ck)是递减的,两者取min那么是单峰函数,二分查找.第二个问题,首先对结果排序,假设最小值为ans[i],那么选中它当最小值的概率是C(n-i, k-1) / C (n, k).p * ans[i]求和就是期望.发现公式可以递推.
- #include <bits/stdc++.h>
- const int N = 1e6 + 5;
- int mx[N][21], mn[N][21];
- int best[N];
- int n, k;
- void build_max() {
- for (int j=1; (1<<j)<=n; ++j) {
- for (int i=1; i+(1<<j)-1<=n; ++i) {
- mx[i][j] = std::max (mx[i][j-1], mx[i+(1<<(j-1))][j-1]);
- }
- }
- }
- int query_max(int l, int r) {
- int k = 0; while (1<<(k+1) <= r-l+1) ++k;
- return std::max (mx[l][k], mx[r-(1<<k)+1][k]);
- }
- void build_min() {
- for (int j=1; (1<<j)<=n; ++j) {
- for (int i=1; i+(1<<j)-1<=n; ++i) {
- mn[i][j] = std::min (mn[i][j-1], mn[i+(1<<(j-1))][j-1]);
- }
- }
- }
- int query_min(int l, int r) {
- int k = 0; while (1<<(k+1) <= r-l+1) ++k;
- return std::min (mn[l][k], mn[r-(1<<k)+1][k]);
- }
- int p(int l, int r) {
- if (l > r || l < 1 || r > n) return 0;
- return std::min (100 * query_max (l, r), query_min (l, r));
- }
- int main() {
- scanf ("%d%d", &n, &k);
- for (int i=1; i<=n; ++i) {
- scanf ("%d", &mx[i][0]);
- }
- build_max ();
- for (int i=1; i<=n; ++i) {
- scanf ("%d", &mn[i][0]);
- }
- build_min ();
- for (int i=1; i<=n; ++i) {
- int low = i, high = n;
- while (low + 1 < high) {
- int mid = low + high >> 1;
- int v1 = 100 * query_max (i, mid);
- int v2 = query_min (i, mid);
- if (v1 < v2) low = mid;
- else high = mid;
- }
- best[i-1] = std::max (p (i, low), p (i, high));
- }
- std::sort (best, best+n);
- double prob = 1.0 * k / n;
- double ans = prob * best[0];
- for (int i=1; i<=n-k; ++i) {
- prob = prob * (n - i - k + 1) / (n - i);
- ans += prob * best[i];
- }
- printf ("%.12f\n", ans);
- return 0;
- }
题意:树上选择两条不相交的路径,且两条路径权值和最大.
分析:因为权值>0, 所以起点或终点一定在叶子结点上,第一次DFS,得到best[u]:u结点的子树下得到最大权值和(一条),以及down[u]:从结点u出发到叶子节点选择一条路的最大权值和.第二次DFS扫描每一个结点,从儿子中选择一个,它子树best[v1]作为一条路径,还有一条从前缀i以及后缀i+1中选择,更新最大值就是答案.
- #include <bits/stdc++.h>
- typedef long long ll;
- const int N = 1e5 + 5;
- std::vector<int> edge[N];
- int a[N];
- ll best[N], down[N];
- ll ans;
- int n;
- void DFS(int u, int fa) {
- std::vector<ll> downs;
- for (auto v: edge[u]) {
- if (v == fa) continue;
- DFS (v, u);
- best[u] = std::max (best[u], best[v]);
- downs.push_back (down[v]);
- }
- ll mx1 = 0, mx2 = 0;
- for (auto d: downs) {
- if (d > mx1) {
- mx2 = mx1; mx1 = d;
- }
- else if (d > mx2) {
- mx2 = d;
- }
- }
- best[u] = std::max (best[u], mx1 + mx2 + a[u]);
- down[u] = mx1 + a[u];
- ans = std::max (ans, best[u]);
- }
- void DFS2(int u, int fa, ll up) {
- up += a[u];
- std::vector<int> children;
- for (auto v: edge[u]) {
- if (v == fa) continue;
- children.push_back (v);
- }
- int sz = children.size ();
- if (sz == 0) return ;
- std::vector<ll> prebest (sz + 1), sufbest (sz + 1); //前缀(1~i-1)最优的一条路径
- prebest[0] = 0;
- for (int i=0; i<sz; ++i) {
- prebest[i+1] = std::max (prebest[i], best[children[i]]);
- }
- sufbest[sz] = 0;
- for (int i=sz-1; i>=0; --i) { //后缀(i+1~sz-1)最优的一条路径
- sufbest[i] = std::max (sufbest[i+1], best[children[i]]);
- }
- std::vector<ll> predown (sz + 1), predown2 (sz + 1); //前缀两条到叶子节点最优的路径
- predown[0] = predown2[0] = 0;
- for (int i=0; i<sz; ++i) {
- predown[i+1] = predown[i];
- predown2[i+1] = predown2[i];
- ll x = down[children[i]];
- if (x > predown[i+1]) {
- predown2[i+1] = predown[i+1];
- predown[i+1] = x;
- }
- else if (x > predown2[i+1]) {
- predown2[i+1] = x;
- }
- }
- std::vector<ll> sufdown (sz + 1), sufdown2 (sz + 1); //后缀两条到叶子节点最优的路径
- sufdown[sz] = sufdown2[sz] = 0;
- for (int i=sz-1; i>=0; --i) {
- sufdown[i] = sufdown[i+1];
- sufdown2[i] = sufdown2[i+1];
- ll x = down[children[i]];
- if (x > sufdown[i]) {
- sufdown2[i] = sufdown[i];
- sufdown[i] = x;
- }
- else if (x > sufdown2[i]) {
- sufdown2[i] = x;
- }
- }
- for (int i=0; i<sz; ++i) {
- ll cur = std::max (prebest[i], sufbest[i+1]);
- cur = std::max (cur, up + std::max (predown[i], sufdown[i+1]));
- cur = std::max (cur, a[u] + predown[i] + sufdown[i+1]);
- cur = std::max (cur, a[u] + predown[i] + predown2[i]);
- cur = std::max (cur, a[u] + sufdown[i+1] + sufdown2[i+1]);
- cur += best[children[i]];
- ans = std::max (ans, cur);
- }
- for (int i=0; i<sz; ++i) {
- int v = children[i];
- ll new_up = up;
- new_up = std::max (new_up, a[u] + std::max (predown[i], sufdown[i+1]));
- DFS2 (v, u, new_up);
- }
- }
- int main() {
- scanf ("%d", &n);
- for (int i=1; i<=n; ++i) scanf ("%d", a+i);
- for (int u, v, i=1; i<n; ++i) {
- scanf ("%d%d", &u, &v);
- edge[u].push_back (v);
- edge[v].push_back (u);
- }
- DFS (1, 0);
- DFS2 (1, 0, 0);
- printf ("%I64d\n", ans);
- return 0;
- }
DFS序 + 线段树 + bitset G - Yash And Trees
题意:两种操作; 1.v的子树的所有结点权值+x 2. 询问v子树%m后是素数的个数
分析:1操作想到线段树的成段更新,树变成线段用DFS序,每个结点有它'统治"的范围(子树). 然而后者统计用普通数组很难实现.用到了bitset这个容器,里面可以表示m位的01,本题表示一个结点子树所拥有的数值(%m),最后只要&primes就是素数个数.那么如何实现+x呢,因为每一位表示数值,往前一位表示+1,那么<<x, 还有可能移位超出去了,还要| >>(m - x).
- #include <bits/stdc++.h>
- #define lson l, mid, o << 1
- #define rson mid + 1, r, o << 1 | 1
- const int N = 1e5 + 5;
- std::bitset<1000> tree[N<<2], primes, ret;
- std::vector<int> edge[N];
- int lazy[N<<2];
- int a[N], id[N], fl[N], fr[N];
- int n, m, q, tot;
- void add(int &x, int y) {
- x += y;
- if (x >= m) x %= m;
- }
- void push_up(int o) {
- tree[o] = tree[o<<1] | tree[o<<1|1];
- }
- void rotate(int o, int x) {
- add (lazy[o], x);
- tree[o] = (tree[o] << x) | (tree[o] >> (m - x));
- }
- void push_down(int o) {
- if (lazy[o] != 0) {
- rotate (o << 1, lazy[o]);
- rotate (o << 1 | 1, lazy[o]);
- lazy[o] = 0;
- }
- }
- void build(int l, int r, int o) {
- if (l == r) {
- tree[o].set (a[id[l]]%m); return ;
- }
- int mid = l + r >> 1;
- build (lson); build (rson);
- push_up (o);
- }
- void updata(int ql, int qr, int x, int l, int r, int o) {
- if (ql <= l && r <= qr) {
- rotate (o, x); return ;
- }
- push_down (o);
- int mid = l + r >> 1;
- if (ql <= mid) updata (ql, qr, x, lson);
- if (qr > mid) updata (ql, qr, x, rson);
- push_up (o);
- }
- void query(int ql, int qr, int l, int r, int o) {
- if (ql <= l && r <= qr) {
- ret |= tree[o]; return ;
- }
- push_down (o);
- int mid = l + r >> 1;
- if (ql <= mid) query (ql, qr, lson);
- if (qr > mid) query (ql, qr, rson);
- }
- void DFS(int u, int fa) {
- id[fl[u]=++tot] = u;
- for (auto v: edge[u]) {
- if (v != fa) DFS (v, u);
- }
- fr[u] = tot;
- }
- bool is_prime(int x) {
- if (x == 2 || x == 3) return true;
- if (x % 6 != 1 && x % 6 != 5) return false;
- for (int i=5; i*i<=x; i+=6) {
- if (x % i == 0 || x % (i + 2) == 0) return false;
- }
- return true;
- }
- int main() {
- scanf ("%d%d", &n, &m);
- for (int i=1; i<=n; ++i) {
- scanf ("%d", a+i);
- }
- for (int u, v, i=0; i<n-1; ++i) {
- scanf ("%d%d", &u, &v);
- edge[u].push_back (v);
- edge[v].push_back (u);
- }
- tot = 0;
- DFS (1, 0);
- for (int i=2; i<m; ++i) {
- if (is_prime (i)) primes.set (i);
- }
- build (1, n, 1);
- scanf ("%d", &q);
- while (q--) {
- int op, v, x; scanf ("%d%d", &op, &v);
- if (op == 1) {
- scanf ("%d", &x);
- x %= m;
- updata (fl[v], fr[v], x, 1, n, 1);
- }
- else {
- ret.reset ();
- query (fl[v], fr[v], 1, n, 1);
- ret &= primes;
- printf ("%d\n", (int) ret.count ());
- }
- }
- return 0;
- }
暴力 || 莫队+线段树 H - Fibonacci-ish II
题意:q次询问,每次对l和r的范围内的数字去重,然后升序排序,计算fib[j] * a[j]的和.
分析:目前只会暴力的思路: 先排序, 然后每一个数原先对应的询问区间内累加,O(nq)复杂度险过
- #include <bits/stdc++.h>
- const int N = 3e4 + 5;
- std::pair<int, int> a[N];
- int fib[N];
- int ql[N], qr[N], last[N], step[N];
- int ans[N];
- int main() {
- int n, m; scanf ("%d%d", &n, &m);
- for (int i=1; i<=n; ++i) {
- scanf ("%d", &a[i].first);
- a[i].second = i;
- }
- std::sort (a+1, a+1+n);
- fib[0] = 1; fib[1] = 1;
- for (int i=2; i<=n; ++i) fib[i] = (fib[i-2] + fib[i-1]) % m;
- int q; scanf ("%d", &q);
- for (int i=0; i<q; ++i) {
- scanf ("%d%d", ql+i, qr+i);
- last[i] = -1;
- }
- for (int i=1; i<=n; ++i) {
- int v = a[i].first % m;
- for (int j=0; j<q; ++j) {
- if (a[i].second < ql[j] || a[i].second > qr[j]) continue;
- if (a[i].first == last[j]) continue;
- ans[j] = (ans[j] + v * fib[step[j]++]) % m;
- last[j] = a[i].first;
- }
- }
- for (int i=0; i<q; ++i) printf ("%d\n", ans[i]);
- return 0;
- }
Manthan, Codefest 16的更多相关文章
- Manthan, Codefest 16 D. Fibonacci-ish
D. Fibonacci-ish time limit per test 3 seconds memory limit per test 512 megabytes input standard in ...
- Manthan, Codefest 16(B--A Trivial Problem)
B. A Trivial Problem time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Manthan, Codefest 16 -C. Spy Syndrome 2
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- Manthan, Codefest 16 -A Ebony and Ivory
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- CF Manthan, Codefest 16 G. Yash And Trees 线段树+bitset
题目链接:http://codeforces.com/problemset/problem/633/G 大意是一棵树两种操作,第一种是某一节点子树所有值+v,第二种问子树中节点模m出现了多少种m以内的 ...
- CF #Manthan, Codefest 16 C. Spy Syndrome 2 Trie
题目链接:http://codeforces.com/problemset/problem/633/C 大意就是给个字典和一个字符串,求一个用字典中的单词恰好构成字符串的匹配. 比赛的时候是用AC自动 ...
- CF Manthan, Codefest 16 B. A Trivial Problem
数学技巧真有趣,看出规律就很简单了 wa 题意:给出数k 输出所有阶乘尾数有k个0的数 这题来来回回看了两三遍, 想的方法总觉得会T 后来想想 阶乘 emmm 1*2*3*4*5*6*7*8*9 ...
- Manthan, Codefest 16 H. Fibonacci-ish II 大力出奇迹 莫队 线段树 矩阵
H. Fibonacci-ish II 题目连接: http://codeforces.com/contest/633/problem/H Description Yash is finally ti ...
- Manthan, Codefest 16 E. Startup Funding ST表 二分 数学
E. Startup Funding 题目连接: http://codeforces.com/contest/633/problem/E Description An e-commerce start ...
随机推荐
- iOS开发UI篇—UIScrollView控件实现图片缩放功能
iOS开发UI篇—UIScrollView控件实现图片缩放功能 一.缩放 1.简单说明: 有些时候,我们可能要对某些内容进行手势缩放,如下图所示 UIScrollView不仅能滚动显示大量内容,还能对 ...
- 3dmax导出3ds具有过多要导出的面超过64k解决方法
参考:http://blog.sina.com.cn/s/blog_7a71dd090100w3r0.html 修改器->网格编辑->ProOptimizer 选中对象, 原始模型 顶点数 ...
- 打开Genesis设置单位为mm
打开Genesis界面: 点击Configuration: 可看到只要设置get_def_units的值即可: 打开C:\genesis\sys\config配置文件,在最后一行加入:get_def_ ...
- JS打造的跟随鼠标移动的酷炫拓扑图案
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- c_test
1.int a[][4]={0,0};与int a[3][4] = {0}; 元素不够的就以位模式初始化为0 a[第一维][第二维] 的大小,也就是最多存几个 int a[][3]={1,2,3,4, ...
- GB2312、GBK和UTF-8三种编码以及QT中文显示乱码问题
1.GB2312.GBK和UTF-8三种编码的简要说明 GB2312.GBK和UTF-8都是一种字符编码,除此之外,还有好多字符编码.只是对于我们中国人的应用来说,用这三种编码 比较多.简单的说一下, ...
- .NET生成带Logo的二维码
使用ThoughtWorks.QRCode生成,利用这个库来生成带Logo的二维码(就是中间嵌了一个图片的二维码),直接见代码: HttpContext context = HttpContext.C ...
- WPF 自定义Metro Style窗体
为了使WPF程序在不同版本的操作系统上保持一致的显示效果,我们需要重写WPF控件样式.这篇博客将展示如何创建一个Metro Style的WPF窗体. 首先先看一下最终窗体的效果图, 通过截图我们可以看 ...
- 介绍n款计算机视觉库/人脸识别开源库/软件
计算机视觉库 OpenCV OpenCV是Intel®开源计算机视觉库.它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 ...
- Computer Graphics Research Software
Computer Graphics Research Software Helping you avoid re-inventing the wheel since 2009! Last update ...