time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.

For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).

The weight of the spanning tree is the sum of weights of all edges included in spanning tree.

Input

First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.

Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.

Output

Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.

The edges are numbered from 1 to m in order of their appearing in input.

Sample test(s)
input
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
output
9
8
11
8
8
8
9 题意:给你一个n个点,m条边的无向图。对于每一条边,求包括该边的最小生成树
我们首先想到的是,求一次整图的MST后,对于每一条边(u,v),如果该边在整图的最小生成树上,答案就是MST,否则,加入的边(u,v)就会使原来的最小生成树成环,可以通过LCA确定该环,那么我们只要求出点u到LCA(u,v)路径上的最大边权和v到LCA(u,v)路径上的最大边权中的最大值mx,MST - mx + w[u,v]就是答案了
其中gx[u][i]表示节点u到其第2^i个祖先之间路径上的最大边权
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + ;
const int DEG = ;
typedef long long ll;
struct edge {
int v, w, next;
edge() {}
edge(int v, int w, int next) : v(v), w(w), next(next){}
}e[N << ]; int head[N], tot;
int fa[N][DEG], deg[N];
int gx[N][DEG];
void init() {
memset(head, -, sizeof head);
tot = ;
}
void addedge(int u, int v, int w) {
e[tot] = edge(v, w, head[u]);
head[u] = tot++;
}
void BFS(int root) {
queue<int> que;
deg[root] = ;
fa[root][] = root;
gx[root][] = ;
que.push(root);
while(!que.empty()) {
int tmp = que.front();
que.pop();
for(int i = ; i < DEG; ++i) {
fa[tmp][i] = fa[ fa[tmp][i - ] ][i - ];
gx[tmp][i] = max(gx[tmp][i - ], gx[ fa[tmp][i - ] ][i - ]);
// printf("[%d %d] ", tmp, gx[tmp][i]);
}
// puts("");
for(int i = head[tmp]; ~i; i = e[i].next) {
int v = e[i].v;
int w = e[i].w;
if(v == fa[tmp][]) continue;
deg[v] = deg[tmp] + ;
fa[v][] = tmp;
gx[v][] = w;
que.push(v);
}
}
}
int Mu, Mv;
ll LCA(int u, int v) {
Mu = Mv = -;
if(deg[u] > deg[v]) swap(u, v);
int hu = deg[u], hv = deg[v];
int tu = u, tv = v;
for(int det = hv - hu, i = ; det; det >>= , ++i)
if(det & ) { Mv = max(Mv, gx[tv][i]); tv = fa[tv][i]; }
if(tu == tv) return Mv;
for(int i = DEG - ; i >= ; --i) {
if(fa[tu][i] == fa[tv][i]) continue;
Mu = max(Mu, gx[tu][i]);
Mv = max(Mv, gx[tv][i]);
tu = fa[tu][i];
tv = fa[tv][i]; }
return max(max(Mu, gx[tu][]), max(Mv, gx[tv][]));
} int U[N], V[N], w[N], r[N], f[N];
int find(int x) { return f[x] == x ? x : f[x] = find(f[x]); }
bool cmp(int a, int b) { return w[a] < w[b]; }
ll MST;
int n, m;
void mst() { scanf("%d%d", &n, &m);
for(int i = ; i <= m; ++i) {
scanf("%d%d%d", &U[i], &V[i], &w[i]);
r[i] = i;
f[i] = i;
}
sort(r + , r + m + , cmp);
MST = ;
for(int i = ; i <= m; ++i)
{
int id = r[i];
int fu = find(U[id]);
int fv = find(V[id]);
if(fu != fv) {
MST += w[id];
f[ fu ] = fv;
addedge(U[id], V[id], w[id]);
addedge(V[id], U[id], w[id]);
}
}
}
int main() {
init();
mst();
BFS(); for(int i = ; i <= m; ++i) {
printf("%I64d\n", MST - LCA(U[i], V[i]) + w[i]);
}
return ;
}

Codeforces Edu3 E. Minimum spanning tree for each edge的更多相关文章

  1. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  2. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  3. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  4. CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  5. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

  6. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  7. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  8. Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)

    题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...

  9. CF Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树变种

    题目链接:http://codeforces.com/problemset/problem/609/E 大致就是有一棵树,对于每一条边,询问包含这条边,最小的一个生成树的权值. 做法就是先求一次最小生 ...

随机推荐

  1. 【leetcode】Single Number (Medium) ☆

    题目: Given an array of integers, every element appears twice except for one. Find that single one. No ...

  2. 【QT】视频播放

    在网上没找到,在书上也没有.后来突然想直接在官网的类里面找Video 居然就有了. 把http://qt-project.org/doc/qt-5/qmediaplayer.html的例子补充完整后就 ...

  3. 魔法禁书目录2:回家(codevs 3024)

    题目描述 Description 大妈打完三战回家,我知道他是怎么回来的,欧洲到日本有L个站点他决定乘坐恰好n次飞机(不是学院都市的超音速飞机)和m次火车来从第一个站点到达最后一个站点.但是有一点很重 ...

  4. python基础——装饰器

    python基础——装饰器 由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数. >>> def now(): ... print('2015-3-25 ...

  5. Mysql之取消主从复制

    Mysql5.7 Mysql取消主从复制很简单.只需在其要终止同步的Server上[一般是Slave]执行下面语句即可: stop slave; reset slave; 如图: .

  6. java socket编程开发简单例子 与 nio非阻塞通道

    基本socket编程 1.以下只是简单例子,没有用多线程处理,只能一发一收(由于scan.nextLine()线程会进入等待状态),使用时可以根据具体项目功能进行优化处理 2.以下代码使用了1.8新特 ...

  7. viewpager中彻底性动态添加、删除Fragment

    为了解决彻底删除fragment,我们要做的是:1.将FragmentPagerAdapter 替换成FragmentStatePagerAdapter,因为前者只要加载过,fragment中的视图就 ...

  8. WhaleSong

    Chasingwaves by myself in theocean of endless sorrow Makingwishes that i will find myherd tomorrow 5 ...

  9. JS中级 - 02:表单、表格

    getElementsByTagName() getElementsByTagName() 方法可返回带有指定标签名的对象的集合. getElementsByClassName() 返回文档中所有指定 ...

  10. iscroll 4.0 滚动(水平和垂直)

    1.概述 iscroll 专注于页面滚动js.Iscroll滚动做的挺好,特别是针对手机网页(android.iphone)正好弥补手动滑屏的遗缺,而今研究一番,把代码贴出来,供大家参考. 2.isc ...