CF449B CF450D

http://codeforces.com/contest/450/problem/D

http://codeforces.com/contest/449/problem/B

Codeforces Round #257 (Div. 2) D

Codeforces Round #257 (Div. 1) B

D. Jzzhu and Cities
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Jzzhu is the president of country A. There are n cities numbered from 1 to n in his country. City 1 is the capital of A. Also there are m roads connecting the cities. One can go from city ui to vi (and vise versa) using the i-th road, the length of this road is xi. Finally, there are k train routes in the country. One can use the i-th train route to go from capital of the country to city si (and vise versa), the length of this route is yi.

Jzzhu doesn't want to waste the money of the country, so he is going to close some of the train routes. Please tell Jzzhu the maximum number of the train routes which can be closed under the following condition: the length of the shortest path from every city to the capital mustn't change.

Input

The first line contains three integers n, m, k (2 ≤ n ≤ 105; 1 ≤ m ≤ 3·105; 1 ≤ k ≤ 105).

Each of the next m lines contains three integers ui, vi, xi (1 ≤ ui, vi ≤ nui ≠ vi; 1 ≤ xi ≤ 109).

Each of the next k lines contains two integers si and yi (2 ≤ si ≤ n; 1 ≤ yi ≤ 109).

It is guaranteed that there is at least one way from every city to the capital. Note, that there can be multiple roads between two cities. Also, there can be multiple routes going to the same city from the capital.

Output

Output a single integer representing the maximum number of the train routes which can be closed.

Sample test(s)
Input
5 5 3
1 2 1
2 3 2
1 3 3
3 4 4
1 5 5
3 5
4 5
5 5
Output
2
Input
2 2 3
1 2 2
2 1 3
2 1
2 2
2 3
Output
2

题意:有n个城市,1是首都。给出m条有权无向边(公路),k条由1连接到某个城市的有权无向边(铁路),求在保持首都到各个城市的最短路长度不变的情况下,最多能炸掉多少条铁路。

题解:首都到达同一个城市的铁路只保留最短的,然后进行最短路并统计某个顶点最短路的更新次数,最后只保留长度等于最短路且更新次数为1(只有这一种最短路)的铁路。

设一个c[i]记录i点的更新次数,初始c[首都]为1,其他为0。更新的时候dij和spfa不是小于才更新嘛,小于的时候就c[新点]=c[当前点],等于的时候就c[新点]+=c[当前点],这样c[i]就是最短路的更新次数(最短路的方案数)。

注意CF可是大家都能出数据的,有人出了个卡SPFA的数据,我都吓尿了。可以给SPFA加SLF优化过。有人用优先队列过的,因为还好没人出卡优先队列SPFA的数据…

代码:

 //#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usll unsigned ll
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(i=0;i<(n);i++)
#define FOR(i,x,n) for(i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) prllf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout)
#define mp make_pair
#define pb push_back const ll INF=1LL<<; const int maxn=;
const int maxm=;
struct edge {
int v,next;
ll w;
} e[maxm];///边表
int head[maxn],en; void add(int x,int y,ll z) {
e[en].w=z;
e[en].v=y;
e[en].next=head[x];
head[x]=en++;
} int n,m,k;
ll g[maxn];
bool f[maxn];///入队标志
int b[maxn], c[maxn];
ll d[maxn];///b为循环队列,d为起点到各点的最短路长度
void spfa() { ///0~n-1,共n个点,起点为st
int i,k;
int st=, l=, r=;
memset(f,,sizeof(f));
memset(b,,sizeof(b));
for(i=; i<n; i++)
d[i]=INF;
b[]=st;
f[st]=;
d[st]=;
c[st]=;
while(l!=r) {
k=b[l++];
l%=n;
for(i=head[k]; i!=-; i=e[i].next)
if (d[k]+e[i].w < d[e[i].v]) {
d[e[i].v]=d[k] + e[i].w;
c[e[i].v]=c[k];
if (!f[e[i].v]) {
if(d[e[i].v]>d[b[l]]) {///SLF优化,这题卡没优化的SPFA……
b[r++]=e[i].v;
r%=n;
} else {
l--;
if(l==-)l=n-;
b[l]=e[i].v;
}
f[e[i].v]=;
}
} else if(d[k]+e[i].w == d[e[i].v])
c[e[i].v]+=c[k];
f[k]=;
}
} void init() {
memset(head,-,sizeof(head));
en=;
} int main() {
int i,x,y;
ll z;
while(scanf("%d%d%d",&n,&m,&k)!=EOF) {
init();
REP(i,m) {
scanf("%d%d%I64d",&x,&y,&z);
x--;
y--;
add(x,y,z);
add(y,x,z);
} REP(i,n) g[i]=INF; REP(i,k) {
scanf("%d%I64d",&x,&z);
x--;
if(z<g[x]) g[x]=z;
} REP(i,n)
if(g[i]!=INF) {
add(,i,g[i]);
add(i,,g[i]);
} memset(c,,sizeof(c));
spfa(); int remain=;
REP(i,n)
if(g[i]!=INF && c[i]== && d[i]==g[i])
remain++;
printf("%d\n",k-remain);
}
return ;
}

CF449B Jzzhu and Cities (最短路)的更多相关文章

  1. CF449B Jzzhu and Cities 迪杰斯特拉最短路算法

    CF449B Jzzhu and Cities 其实这一道题并不是很难,只是一个最短路而已,请继续看我的题解吧~(^▽^) AC代码: #include<bits/stdc++.h> #d ...

  2. Codeforces Round #257 (Div. 2) D题:Jzzhu and Cities 删特殊边的最短路

    D. Jzzhu and Cities time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  3. Codeforces C. Jzzhu and Cities(dijkstra最短路)

    题目描述: Jzzhu and Cities time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  4. Codeforces 450D:Jzzhu and Cities(最短路,dijkstra)

    D. Jzzhu and Cities time limit per test: 2 seconds memory limit per test: 256 megabytes input: stand ...

  5. Codeforces 449 B. Jzzhu and Cities

    堆优化dijkstra,假设哪条铁路能够被更新,就把相应铁路删除. B. Jzzhu and Cities time limit per test 2 seconds memory limit per ...

  6. D. Jzzhu and Cities

    Jzzhu is the president of country A. There are n cities numbered from 1 to n in his country. City 1  ...

  7. codeforces 449B Jzzhu and Cities (Dij+堆优化)

    输入一个无向图<V,E>    V<=1e5, E<=3e5 现在另外给k条边(u=1,v=s[k],w=y[k]) 问在不影响从结点1出发到所有结点的最短路的前提下,最多可以 ...

  8. Codeforces Round #257(Div.2) D Jzzhu and Cities --SPFA

    题意:n个城市,中间有m条道路(双向),再给出k条铁路,铁路直接从点1到点v,现在要拆掉一些铁路,在保证不影响每个点的最短距离(距离1)不变的情况下,问最多能删除多少条铁路 分析:先求一次最短路,铁路 ...

  9. Jzzhu and Cities

    CF #257 div2D:http://codeforces.com/contest/450/problem/D 题意:给你n个城市,m条无向有权边.另外还有k条边,每条边从起到到i.求可以删除这k ...

随机推荐

  1. 【uoj264】 NOIP2016—蚯蚓

    http://uoj.ac/problem/264 (题目链接) 题意 n条蚯蚓,时间为m.每单位时间要可以将最长的蚯蚓切成len/2和len-len/2两份,长度为0的蚯蚓不会消失,因为每单位时间所 ...

  2. css后代选择器(div.class中间不带空格)

    如果我要查找<div>上用了.class的元素,查找方法:div.class:中间是不空格的. 以上这种形式为css后代选择器 参考:http://www.w3school.com.cn/ ...

  3. jQuery 效果 - 隐藏和显示

    $('...').hide();//隐藏 $('...').show();//显示 以上使用需要针对特定的功能单独使用,如果是混用,那么就要有标志位去实现,而通常两者更高级的一步到位实现: $('.. ...

  4. xpath中/和//的差别

    xpath中 "/"是在子节点中查找,"//"是在所有子节点中查找,包括子节点的子节点. example: leve1/leve2:得到文本leve2 leve ...

  5. C++ 第二次课堂作业(反转链表)

    题目链接: 传送门 GitHub链接: 传送门

  6. 【Beta】第三次任务发布

    后端(补做) #86 了解社区新建文章.添加评论(回复)的机制.整理成API文档,包括如何请求新建文章.新建评论(回复).如何获取文章内容和评论内容. 验收条件:文档PM要能看懂. 前端(补做) #8 ...

  7. HDU5670Machine(抽象进制)

    有一个机器,它有 m (2\leq m\leq 30)m(2≤m≤30) 个彩灯和一个按钮.每按下按钮时,最右边的彩灯会发生一次变换.变换为: 1. 如果当前状态为红色,它将变成绿色: 2.如果当前状 ...

  8. python 培训之 Python 数据类型

    0. 变量 计算机某块内存的标签,存储数据的容器的标签,可被覆盖. a = ""     a = "a1bcd"       a=a+"ddd&quo ...

  9. nginx查看安装了哪些模块

    查看安装了哪些模块命令: [root@RG-PowerCache-X xcache]# nginx/sbin/nginx -Vnginx version: nginx/1.2.3built by gc ...

  10. https 页面中引入 http 资源的解决方式

    相对协议 应用场景 浏览器默认是不允许在 https 里面引用 http 资源的,一般都会弹出提示框. 用户确认后才会继续加载,用户体验非常差. 而且如果在一个 https 页面里动态的引入 http ...