题意: 给你两个凸包,求其最短距离。

解法: POJ 我真的是弄不懂了,也不说一声点就是按顺时针给出的,不用调整点顺序。 还是说数据水了,没出乱给点或给逆时针点的数据呢。。我直接默认顺时针给的点居然A了,但是我把给的点求个逆时针凸包,然后再反转一下时针顺序,又WA了。这其中不知道有什么玄机。。

求凸包最短距离还是用旋转卡壳的方法,这里采用的是网上给出的一种方法:

英文版:        http://cgm.cs.mcgill.ca/~orm/mind2p.html

中文翻译版:  http://www.cnblogs.com/bless/archive/2008/08/06/1262438.html

输入的两个凸包须是顺时针。

分别以一个为主卡另外一个,两次取最小值即可。

算法就不分析了, 画个图理解一下就知道了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define pi acos(-1.0)
#define eps 1e-8
using namespace std; struct Point{
double x,y;
Point(double x=, double y=):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
int dcmp(double x) {
if(x < -eps) return -;
if(x > eps) return ;
return ;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); } double DistanceToSeg(Point P, Point A, Point B) {
if(A == B) return Length(P-A);
Vector v1 = B-A, v2 = P-A, v3 = P-B;
if(dcmp(Dot(v1, v2)) < ) return Length(v2);
if(dcmp(Dot(v1, v3)) > ) return Length(v3);
return fabs(Cross(v1, v2)) / Length(v1);
}
double SegDistancetoSeg(Point A,Point B,Point C,Point D) {
return min(min(DistanceToSeg(C,A,B),DistanceToSeg(D,A,B)),min(DistanceToSeg(A,C,D),DistanceToSeg(B,C,D)));
}
Point DisP(Point A,Point B) { return Length(B-A); } double MinDisOfTwoConvexHull(Point P[],int n,Point Q[],int m) {
int Pymin = , Qymax = , i,j;
for(i=;i<n;i++) if(dcmp(P[i].y-P[Pymin].y) < ) Pymin = i;
for(i=;i<m;i++) if(dcmp(Q[i].y-Q[Qymax].y) > ) Qymax = i;
P[n] = P[], Q[m] = Q[];
double Mindis = 1e90, Tmp;
for(i=;i<n;i++) {
while(dcmp(Tmp = Cross(P[Pymin+]-P[Pymin],Q[Qymax+]-P[Pymin])-Cross(P[Pymin+]-P[Pymin],Q[Qymax]-P[Pymin])) > )
Qymax = (Qymax+)%m;
if(dcmp(Tmp) < ) Mindis = min(Mindis,DistanceToSeg(Q[Qymax],P[Pymin],P[Pymin+]));
else Mindis = min(Mindis,SegDistancetoSeg(P[Pymin],P[Pymin+],Q[Qymax],Q[Qymax+]));
Pymin = (Pymin+)%n;
}
return Mindis;
} Point P[],nP[],Q[],nQ[]; int main()
{
int n,m,i;
while(scanf("%d%d",&n,&m)!=EOF && n+m)
{
for(i=;i<n;i++) P[i].input();
for(i=;i<m;i++) Q[i].input();
printf("%.5f\n",min(MinDisOfTwoConvexHull(P,n,Q,m),MinDisOfTwoConvexHull(Q,m,P,n)));
}
return ;
}

求凸包,反转,WA。。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define pi acos(-1.0)
#define eps 1e-8
using namespace std; struct Point{
double x,y;
Point(double x=, double y=):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
int dcmp(double x) {
if(x < -eps) return -;
if(x > eps) return ;
return ;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return dcmp(a.x-b.x)< || (dcmp(a.x-b.x)== && dcmp(a.y-b.y)<); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); } double DistanceToSeg(Point P, Point A, Point B) {
if(A == B) return Length(P-A);
Vector v1 = B-A, v2 = P-A, v3 = P-B;
if(dcmp(Dot(v1, v2)) < ) return Length(v2);
if(dcmp(Dot(v1, v3)) > ) return Length(v3);
return fabs(Cross(v1, v2)) / Length(v1);
}
double SegDistancetoSeg(Point A,Point B,Point C,Point D) {
return min(min(DistanceToSeg(C,A,B),DistanceToSeg(D,A,B)),min(DistanceToSeg(A,C,D),DistanceToSeg(B,C,D)));
}
Point DisP(Point A,Point B) { return Length(B-A); }
bool SegmentIntersection(Point A,Point B,Point C,Point D) {
return max(A.x,B.x) >= min(C.x,D.x) &&
max(C.x,D.x) >= min(A.x,B.x) &&
max(A.y,B.y) >= min(C.y,D.y) &&
max(C.y,D.y) >= min(A.y,B.y) &&
dcmp(Cross(C-A,B-A)*Cross(D-A,B-A)) <= &&
dcmp(Cross(A-C,D-C)*Cross(B-C,D-C)) <= ;
}
void SegIntersectionPoint(Point& P,Point a,Point b,Point c,Point d) { //需保证ab,cd相交
P.x = (Cross(d-a,b-a)*c.x - Cross(c-a,b-a)*d.x)/(Cross(d-a,b-a)-Cross(c-a,b-a));
P.y = (Cross(d-a,b-a)*c.y - Cross(c-a,b-a)*d.y)/(Cross(d-a,b-a)-Cross(c-a,b-a));
}
void CounterClockwiseToClockWise(Point* p,Point *np,int n){
np[] = p[];
for(int i=;i<n;i++) np[i] = p[n-i];
}
int ConvexHull(Point* p, int n, Point* ch)
{
sort(p,p+n);
int m = ;
for(int i=;i<n;i++) {
while(m > && dcmp(Cross(ch[m-]-ch[m-], p[i]-ch[m-])) <= ) m--;
ch[m++] = p[i];
}
int k = m;
for(int i=n-;i>=;i--) {
while(m > k && dcmp(Cross(ch[m-]-ch[m-], p[i]-ch[m-])) <= ) m--;
ch[m++] = p[i];
}
if(n > ) m--;
return m;
}
double MinDisOfTwoConvexHull(Point* P,int n,Point* Q,int m) {
int Pymin = , Qymax = , i,j;
for(i=;i<n;i++) if(dcmp(P[i].y-P[Pymin].y) < ) Pymin = i;
for(i=;i<m;i++) if(dcmp(Q[i].y-Q[Qymax].y) > ) Qymax = i;
P[n] = P[], Q[m] = Q[];
double Mindis = 1e90, Tmp;
for(i=;i<n;i++) {
while(dcmp(Tmp = Cross(P[Pymin+]-P[Pymin],Q[Qymax+]-P[Pymin])-Cross(P[Pymin+]-P[Pymin],Q[Qymax]-P[Pymin])) > )
Qymax = (Qymax+)%m;
if(dcmp(Tmp) < ) Mindis = min(Mindis,DistanceToSeg(Q[Qymax],P[Pymin],P[Pymin+]));
else Mindis = min(Mindis,SegDistancetoSeg(P[Pymin],P[Pymin+],Q[Qymax],Q[Qymax+]));
Pymin = (Pymin+)%n;
}
return Mindis;
} Point P[],nP[],Q[],nQ[]; int main()
{
int n,m,i;
while(scanf("%d%d",&n,&m)!=EOF && n+m)
{
for(i=;i<n;i++) P[i].input();
for(i=;i<m;i++) Q[i].input();
ConvexHull(P,n,nP);
CounterClockwiseToClockWise(nP,P,n);
ConvexHull(Q,m,nQ);
CounterClockwiseToClockWise(nQ,Q,m);
printf("%.5f\n",min(MinDisOfTwoConvexHull(P,n,Q,m),MinDisOfTwoConvexHull(Q,m,P,n)));
}
return ;
}

POJ 3608 Bridge Across Islands --凸包间距离,旋转卡壳的更多相关文章

  1. POJ - 3608 Bridge Across Islands【旋转卡壳】及一些有趣现象

    给两个凸包,求这两个凸包间最短距离 旋转卡壳的基础题 因为是初学旋转卡壳,所以找了别人的代码进行观摩..然而发现很有意思的现象 比如说这个代码(只截取了关键部分) double solve(Point ...

  2. ●POJ 3608 Bridge Across Islands

    题链: http://poj.org/problem?id=3608 题解: 计算几何,求两个凸包间的最小距离,旋转卡壳 两个凸包间的距离,无非下面三种情况: 所以可以基于旋转卡壳的思想,去求最小距离 ...

  3. poj 3608 Bridge Across Islands

    题目:计算两个不相交凸多边形间的最小距离. 分析:计算几何.凸包.旋转卡壳.分别求出凸包,利用旋转卡壳求出对踵点对,枚举距离即可. 注意:1.利用向量法判断旋转,而不是计算角度:避免精度问题和TLE. ...

  4. POJ 3608 Bridge Across Islands(旋转卡壳,两凸包最短距离)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7202   Accepted:  ...

  5. POJ 3608 Bridge Across Islands [旋转卡壳]

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10455   Accepted: ...

  6. POJ 3608 Bridge Across Islands (旋转卡壳)

    [题目链接] http://poj.org/problem?id=3608 [题目大意] 求出两个凸包之间的最短距离 [题解] 我们先找到一个凸包的上顶点和一个凸包的下定点,以这两个点为起点向下一个点 ...

  7. POJ 3608 Bridge Across Islands(计算几何の旋转卡壳)

    Description Thousands of thousands years ago there was a small kingdom located in the middle of the ...

  8. poj 3608 Bridge Across Islands 两凸包间最近距离

    /** 旋转卡壳,, **/ #include <iostream> #include <algorithm> #include <cmath> #include ...

  9. poj 3068 Bridge Across Islands

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11196   Accepted: ...

随机推荐

  1. 值得 Web 开发人员收藏的16款 HTML5 工具

    HTML5 正在迅速改变创建和管理网站的方式.HTML5 在不同的领域让网页设计更强大的.快速,安全,响应式,互动和美丽,这些优点吸引更多的 Web 开发人员使用 HTML5 开发各种网站和应用程序. ...

  2. [js开源组件开发]query组件,获取url参数和form表单json格式

    query组件,获取url参数和form表单json格式 距离上次的组件[js开源组件开发]ajax分页组件一转眼过去了近二十天,或许我一周一组件的承诺有了质疑声,但其实我一直在做,只是没人看到……, ...

  3. 如何垂直居中div?面试经常问到

    水平居中:给div设置一个宽度,然后添加margin:0 auto属性 div{ width:200px; margin:0 auto;} 让绝对定位的div居中 ;;;;} 重点来了! 水平垂直居中 ...

  4. [deviceone开发]-购物车的简单示例

    一.简介 主要是演示listview所在的ui和模板cell所在的ui之间数据的交互,点击一行,可以通过加减数量,自动把所有选中的汽车价格显示在底部. 二.效果图 三.示例地址: http://sou ...

  5. javscript闭包的准备工作 -- 作用域与作用域链

    作用域是JavaScript最重要的概念之一,想要学好JavaScript就需要理解JavaScript作用域和作用域链的工作原理.今天这篇文章对JavaScript作用域和作用域链作简单的介绍,希望 ...

  6. ArcCatalog中连接SDE数据库

    描述 在ArcCatalog采用直接的方式连接SDE数据库时,无论怎样填写连接参数,都连接不上(数据库管理工具和代码都可以连).主要报两类错误: Error:ORA-12154:TNS:无法解析指定的 ...

  7. C4.5(决策树)

    C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法.它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类.C4.5的目标是通过学习, ...

  8. SharePoint 2013 JavaScript 对象判断用户权限

    场 景 近期有个场景,判断当前用户对项目有没有编辑权限,使用JavaScript完成,弄了好久才弄出来,分享一下,有需要的自行扩展吧,具体如下: 代 码 function getPermissions ...

  9. android之HttpClient

    Apache包是对android联网访问封装的很好的一个包,也是android访问网络最常用的类. 下面分别讲一下怎么用HttpClient实现get,post请求. 1.Get 请求 HttpGet ...

  10. iOS---TextView显示HTML文本

    _checkAllIntroduceTextView = [[UITextView alloc] initWithFrame:CGRectMake(10, 0, kScreenWidth-20, kS ...