UVa10820 Send a Table[欧拉函数]
Send a Table
Input: Standard Input
Output: Standard Output
When participating in programming contests, you sometimes face the following problem: You know how to calcutale the output for the given input values, but your algorithm is way too slow to ever pass the time limit. However hard you try, you just can't discover the proper break-off conditions that would bring down the number of iterations to within acceptable limits.
Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half an our and produce a table of answers for all possible input values, encode this table into a program, submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating, but remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided to apply such a 'technique'. But however hard he tried, he wasn't able to squeeze all his pre-calculated values into a program small enough to pass the judge. The situation looked hopeless, until he discovered the following property regarding the answers: the answers where calculated from two integers, but whenever the two input values had a common factor, the answer could be easily derived from the answer for which the input values were divided by that factor. To put it in other words:
Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range [1, N]. When he knows Answer(x, y), he can easily derive Answer(k*x, k*y), where k is any integer from it by applying some simple calculations involving Answer(x, y) and k. For example if N=4, he only needs to know the answers for 11 out of the 16 possible input value combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2), Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric, so Answer(3, 2) can not be derived from Answer(2, 3).
Now what we want you to do is: for any values of N from 1 upto and including 50000, give the number of function Jimmy has to pre-calculate.
Input
The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which indicates the value of N. Input is terminated by a line which contains a zero. This line should not be processed.
Output
For each line of input produce one line of output. This line contains an integer which indicates how many values Jimmy has to pre-calculate for a certain value of N.
题意:
洛谷U5067
题目可以根据f(x,y)用O(1)的算法算出f(x*k,y*k),其中k是任意正整数。所以,某些f函数是没有必要保存的,需要时调出其他的f函数计算下就可以了。
给出N,你需要求出最短的表里有多少个元素。
白书上的题
本质:输入n,有多少个二元组(x,y)满足1<=x,y<=n且x,y互质
设满足x<y的有f(n)个,答案为f(n)*2+1 (1,1)也满足
f(n)=phi(2)+phi(3)+...+phi(n)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=5e5+;
int phi[N],s[N],n;
void phiTable(int n){
phi[]=;
for(int i=;i<=n;i++) if(!phi[i])
for(int j=i;j<=n;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
for(int i=;i<=n;i++)
s[i]=s[i-]+phi[i];
}
int main(){
phiTable(N-);
while(cin>>n){
printf("%d\n",*s[n]-);
}
}
UVa10820 Send a Table[欧拉函数]的更多相关文章
- Uva 10820 Send a Table(欧拉函数)
对每个n,答案就是(phi[2]+phi[3]+...+phi[n])*2+1,简单的欧拉函数应用. #include<iostream> #include<cstdio> # ...
- UVA 10820 - Send a Table 数论 (欧拉函数)
Send a Table Input: Standard Input Output: Standard Output When participating in programming contest ...
- UVa 10820 (打表、欧拉函数) Send a Table
题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1 ...
- uva10820 send a table (nlogn求1-n欧拉函数值模版
//重点就是求1-n的欧拉函数啦,重点是nlogn求法的版 //大概过程类似于筛选法求素数 #include<cstdio> #include<iostream> #inclu ...
- UVa 10820 - Send a Table(欧拉函数)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- Reflect(欧拉函数)
Reflect Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- POJ 2480 (约数+欧拉函数)
题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- JavaScript 数据类型判断
JavaScript 的数据类型分为两类:原始类型(基本类型)和对象类型(引用类型).原始类型包括数字.字符串和布尔值,另外有两个特殊的原始值:null 和 undefined,除此之外的都是对象.对 ...
- user profile services提示“BAIL: MMS(7116): sql.cpp(8490): 0x80231334 (The sql connection string has unsupported values.)”解决办法
user profile services的2个服务Forefront Identity Manager Service 和 Forefront Identity Manager Synchroniz ...
- userprofile同步用户失败的原因和解决方案
userprofile同步账号进行出现同步不到用户.有个时候同步成功了但是为0个用户.有个时候提示同步失败或拒绝等错误.如何查看同步服务同步的结果.其实明白sharepoint2010同步用户的原理都 ...
- 【Leafletjs】4.L.Map 中文API
L.Map API各种类中的核心部分,用来在页面中创建地图并操纵地图. 使用 example // initialize the map on the "map" div with ...
- Understanding the Uncertain Geographic Context Problem
"The areal units (zonal objects) used in many geographical studies are arbitrary, modifiable, a ...
- JavaBean的作用域
JavaBean的作用域 scope属性决定了JavaBean对象存在的范围. scope的可选值包括四种: page(默认值) request session application 这四个值对应的 ...
- Android 手机卫士--实现设置界面的一个条目布局结构
本文地址:http://www.cnblogs.com/wuyudong/p/5908986.html,转载请注明源地址. 本文以及后续文章,将一步步完善功能列表: 要点击九宫格中的条目,需要注册点击 ...
- UITableView详细注释
style //普通 UITableViewStylePlain, //分组 UITableViewStyleGrouped //表格视图 UITableView * tableView = [[UI ...
- Mac OS 下的解压缩软件——The Unarchiver
The Unarchiver 是 Mac 上最流行的解压软件,免费开源.操作方式与系统自带解压工具 Archive Utility.app 一样,双击自动解压.最爽的一点是把解压后原始文件直接仍进废纸 ...
- [转]Json转换神器之Google Gson的使用
这几天,因为项目的需要,接触了Google的Gson库,发现这个东西很好用,遂记下简单的笔记,供以后参考.至于Gson是干什么的,有什么优点,请各位同学自行百度.话不多说,切入正题: 1. 下载Gso ...