Mean Shift算法,一般是指一个迭代的过程。即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束。

meanshift可以被用来做目标跟踪图像分割

参考《Mean Shift:A Robust Approach Toward Feature Space Analysis》

公式就不写了。meanshift其实原理挺简单的,就是随便找个种子点,然后开始在该种子点邻域内寻找其目标点的密度中心,那么种子点到密度中心点的向量方向就是密度上升方向了,更新密度中心点为种子点,迭代,直到到达截止条件(opencv里的meanshift把截止条件定为迭代次数和截止精度,当然这两者可以随意组合)。

改进的meanshift使用了核函数(区别种子点附近和远处点的权重)和权重系数(区别不同样本的权重),但基本原理还是一样的。

这篇论文很长,在实现该方法的同时,同时系统地证明了meanshift算法是沿着最大密度梯度方向搜索的,并且随着多次迭代,种子点趋于稳定。

其实在上面讲述的时候去掉了一个背景,就是所有样本都采样自概率密度函数,但这并不影响我们理解其原理。

通过分析meanshift的原理,其目的就是寻找局部最优点,这样很容易联想到它在图像分割或聚类上的应用。

对于图像处理方面的应用,其样本可认为是(x,y),x值二维坐标,y是颜色空间(p维,maybe  1or3),那么总维数是p+2。

meanshift也可用作图像平滑,但是对每一个像素点操作用迭代截止值代替,算法复杂度肯定很高了。

用meanshift算法做目标跟踪时,先预先取一个目标矩形框,在目标移动的时候,就会迭代更新密度中心点到当前目标的密度中心,这样只是一个固定的矩形框的局部范围搜索,算法复杂度肯定可以接受,实时性就不错了。但是通过分析发现用meanshift做跟踪的话,目标突然消失又突然出现,这个算法就凉凉了,所以换句话说,目标必须连续移动。

  关于用meanshift做图像分割,后面详细介绍:

一、Mean Shift算法概述

Mean Shift算法又称均值漂移算法,Mean Shift的概念最早是由Fukunage在1975年提出的,在后来又由Yzong Cheng对其进行扩充,主要提出了两点改进:

定义了核函数;

增加了权重系数。

核函数的定义使得偏移向量的贡献随着样本与被偏移点的距离的不同而不同。

权重系数使得不同样本的权重不同。Mean Shift算法在聚类,图像平滑,分割以及视频跟踪等方面有广泛的应用。

二、算法原理

2.1、核函数

核函数性质参见:http://www.cnblogs.com/liqizhou/archive/2012/05/11/2495788.html

在Mean Shift算法中引入核函数的目的是:随着样本与被偏移点距离的不同,其偏移量对均值偏移向量的贡献也不同。核函数是机器学习中常用的一种方式,核函数的定义如下:

常用的核函数有高斯核函数。高斯核函数如下所示:

其中,h称为带宽(bandwidth),不同带宽的核函数如下图所示:

附上画出上图的python代码:

import matplotlib.pyplot as plt
import math def cal_Gaussian(x, h=1):
molecule = x * x
denominator = 2 * h * h
left = 1 / (math.sqrt(2 * math.pi) * h)
return left * math.exp(-molecule / denominator) x = [] for i in range(-40,40):
x.append(i * 0.5); score_1 = []
score_2 = []
score_3 = []
score_4 = [] for i in x:
score_1.append(cal_Gaussian(i,1))
score_2.append(cal_Gaussian(i,2))
score_3.append(cal_Gaussian(i,3))
score_4.append(cal_Gaussian(i,4)) plt.plot(x, score_1, 'b--', label="h=1")
plt.plot(x, score_2, 'k--', label="h=2")
plt.plot(x, score_3, 'g--', label="h=3")
plt.plot(x, score_4, 'r--', label="h=4") plt.legend(loc="upper right")
plt.xlabel("x")
plt.ylabel("N")
plt.show()

2.2、Mean Shift算法的核心思想

2.2.1、基本原理

对于Mean Shift算法,是一个迭代的过程,即先算出当前点的偏移均值,将该点移动到此偏移均值,然后以此为新的起始点,继续移动,直到满足最终的条件。

以上是官方的说法,即书上的定义,个人理解就是,在d维空间中,任选一个点,然后以这个点为圆心,h为半径做一个高维球,因为有d维,d可能大于2,所以是高维球。落在这个球内的所有点和圆心都会产生一个向量,向量是以圆心为起点落在球内的点位终点。然后把这些向量都相加。相加的结果就是Meanshift向量。

步骤1:在指定的区域内计算偏移均值(下图中黄色的圈)

步骤2:移动该点到偏移均值点处(如图,其中黄色箭头就是Mh(meanshift向量))

再以meanshift向量的终点为圆心,再做一个高维的球。如下图所以,重复以上步骤,就可得到一个meanshift向量。如此重复下去,meanshift算法可以收敛到概率密度最大得地方。也就是最稠密的地方。

步骤3: 重复上述的过程(计算新的偏移均值,移动)

步骤4: 满足最终的条件,即退出。下图便是最终的结果!

从上述过程可以看出,在Mean Shift算法中,最关键的就是计算每个点的偏移均值然后根据新计算的偏移均值更新点的位置

2.2.2、基本的Mean Shift向量形式

2.2.3、改进的Mean Shift向量形式

2.3、Mean Shift算法的解释

在Mean Shift算法中,实际上是利用了概率密度,求得概率密度的局部最优解。

2.3.1、概率密度梯度

2.3.2、Mean Shift向量的修正

2.4、Mean Shift算法流程

--------------------------------------------------------------------------------------------------------------------------------分割线(始)----------------------------------------------------------------------------------------------------------------------------------

附:

关于Mean Shift的推导,再来一个版本。总结在这里便于对比。也可以去看原文:http://www.cnblogs.com/liqizhou/archive/2012/05/12/2497220.html

首先,通过核函数等,将meanshift算法变形为:

(1)

K()是核函数,h为半径,Ck,d/nhd  为单位密度,要使得上式f得到最大,最容易想到的就是对上式进行求导,的确meanshift就是对上式进行求导:

(2)

令:

K(x)叫做g(x)的影子核,名字听上去挺深奥的,也就是求导的负方向,那么上式可以表示为:

对于上式,如果才用高斯核,那么,第一项就等于fh,k

第二项就相当于一个meanshift向量的式子:

那么(2)就可以表示为

下图分析的构成,如图,可以很清晰的表达其构成。

要使得=0,当且仅当=0,可以得出新的圆心坐标:

    (3)

上面介绍了meanshift的流程,下面具体给出它的算法流程。

  1. 选择空间中x为圆心,以h为半径为半径,做一个高维球,落在所有球内的所有点xi
  2. 计算,如果<ε(人工设定),推出程序。如果>ε, 则利用(3)计算x,返回1。

下面介绍meashift算法怎样运用到图像上的聚类和跟踪

一般一个图像就是个矩阵,像素点均匀的分布在图像上,就没有点的稠密性。所以怎样来定义点的概率密度,这才是最关键的。

如果我们就算点x的概率密度,采用的方法如下:以x为圆心,以h为半径。落在球内的点位xi   定义二个模式规则。

(1)x像素点的颜色与xi像素点颜色越相近,我们定义概率密度越高。

(2)离x的位置越近的像素点xi,定义概率密度越高。

所以定义总的概率密度,是二个规则概率密度乘积的结果,可以用公式(4)表示:

(4)

其中:代表空间位置的信息,离远点越近,其值就越大,表示颜色信息,颜色越相似,其值越大。如图左上角图片,按照(4)计算的概率密度如图右上。利用meanshift对其聚类,可得到左下角的图。

--------------------------------------------------------------------------------------------------------------------------------分割线(末)----------------------------------------------------------------------------------------------------------------------------------

三、实验

3.1、实验数据

附上画图的python代码(注意,需要相应路径存放data):

import matplotlib.pyplot as plt

f = open("data")
x = []
y = []
for line in f.readlines():
lines = line.strip().split("\t")
if len(lines) == 2:
x.append(float(lines[0]))
y.append(float(lines[1]))
f.close() plt.plot(x, y, 'b.', label="original data")
plt.title('Mean Shift')
plt.legend(loc="upper right")
plt.show()

3.2 实验源码

import math
import sys
import numpy as np MIN_DISTANCE = 0.000001#mini error def load_data(path, feature_num=2):
f = open(path)
data = []
for line in f.readlines():
lines = line.strip().split("\t")
data_tmp = []
if len(lines) != feature_num:
continue
for i in range(feature_num):
data_tmp.append(float(lines[i])) data.append(data_tmp)
f.close()
return data def gaussian_kernel(distance, bandwidth):
m = np.shape(distance)[0]
right = np.mat(np.zeros((m, 1)))
for i in range(m):
right[i, 0] = (-0.5 * distance[i] * distance[i].T) / (bandwidth * bandwidth)
right[i, 0] = np.exp(right[i, 0])
left = 1 / (bandwidth * math.sqrt(2 * math.pi)) gaussian_val = left * right
return gaussian_val def shift_point(point, points, kernel_bandwidth):
points = np.mat(points)
m,n = np.shape(points)
#计算距离
point_distances = np.mat(np.zeros((m,1)))
for i in range(m):
point_distances[i, 0] = np.sqrt((point - points[i]) * (point - points[i]).T) #计算高斯核
point_weights = gaussian_kernel(point_distances, kernel_bandwidth) #计算分母
all = 0.0
for i in range(m):
all += point_weights[i, 0] #均值偏移
point_shifted = point_weights.T * points / all
return point_shifted def euclidean_dist(pointA, pointB):
#计算pointA和pointB之间的欧式距离
total = (pointA - pointB) * (pointA - pointB).T
return math.sqrt(total) def distance_to_group(point, group):
min_distance = 10000.0
for pt in group:
dist = euclidean_dist(point, pt)
if dist < min_distance:
min_distance = dist
return min_distance def group_points(mean_shift_points):
group_assignment = []
m,n = np.shape(mean_shift_points)
index = 0
index_dict = {}
for i in range(m):
item = []
for j in range(n):
item.append(str(("%5.2f" % mean_shift_points[i, j]))) item_1 = "_".join(item)
print(item_1)
if item_1 not in index_dict:
index_dict[item_1] = index
index += 1 for i in range(m):
item = []
for j in range(n):
item.append(str(("%5.2f" % mean_shift_points[i, j]))) item_1 = "_".join(item)
group_assignment.append(index_dict[item_1]) return group_assignment def train_mean_shift(points, kenel_bandwidth=2):
#shift_points = np.array(points)
mean_shift_points = np.mat(points)
max_min_dist = 1
iter = 0
m, n = np.shape(mean_shift_points)
need_shift = [True] * m #cal the mean shift vector
while max_min_dist > MIN_DISTANCE:
max_min_dist = 0
iter += 1
print ("iter : " + str(iter))
for i in range(0, m):
#判断每一个样本点是否需要计算偏置均值
if not need_shift[i]:
continue
p_new = mean_shift_points[i]
p_new_start = p_new
p_new = shift_point(p_new, points, kenel_bandwidth)
dist = euclidean_dist(p_new, p_new_start) if dist > max_min_dist:#record the max in all points
max_min_dist = dist
if dist < MIN_DISTANCE:#no need to move
need_shift[i] = False mean_shift_points[i] = p_new
#计算最终的group
group = group_points(mean_shift_points) return np.mat(points), mean_shift_points, group if __name__ == "__main__":
#导入数据集
path = "./data"
data = load_data(path, 2) #训练,h=2
points, shift_points, cluster = train_mean_shift(data, 2) for i in range(len(cluster)):
print( "%5.2f,%5.2f\t%5.2f,%5.2f\t%i" % (points[i,0], points[i, 1], shift_points[i, 0], shift_points[i, 1], cluster[i]))

3.3 实验结果

经过Mean Shift算法聚类后的数据如下所示:

import matplotlib.pyplot as plt

f = open("data_mean")
cluster_x_0 = []
cluster_x_1 = []
cluster_x_2 = []
cluster_y_0 = []
cluster_y_1 = []
cluster_y_2 = []
center_x = []
center_y = []
center_dict = {} for line in f.readlines():
lines = line.strip().split("\t")
if len(lines) == 3:
label = int(lines[2])
if label == 0:
data_1 = lines[0].strip().split(",")
cluster_x_0.append(float(data_1[0]))
cluster_y_0.append(float(data_1[1]))
if label not in center_dict:
center_dict[label] = 1
data_2 = lines[1].strip().split(",")
center_x.append(float(data_2[0]))
center_y.append(float(data_2[1]))
elif label == 1:
data_1 = lines[0].strip().split(",")
cluster_x_1.append(float(data_1[0]))
cluster_y_1.append(float(data_1[1]))
if label not in center_dict:
center_dict[label] = 1
data_2 = lines[1].strip().split(",")
center_x.append(float(data_2[0]))
center_y.append(float(data_2[1]))
else:
data_1 = lines[0].strip().split(",")
cluster_x_2.append(float(data_1[0]))
cluster_y_2.append(float(data_1[1]))
if label not in center_dict:
center_dict[label] = 1
data_2 = lines[1].strip().split(",")
center_x.append(float(data_2[0]))
center_y.append(float(data_2[1]))
f.close() plt.plot(cluster_x_0, cluster_y_0, 'b.', label="cluster_0")
plt.plot(cluster_x_1, cluster_y_1, 'g.', label="cluster_1")
plt.plot(cluster_x_2, cluster_y_2, 'k.', label="cluster_2")
plt.plot(center_x, center_y, 'r+', label="mean point")
plt.title('Mean Shift 2')
#plt.legend(loc="best")
plt.show()

推荐链接:

https://blog.csdn.net/ttransposition/article/details/38514127

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/

https://github.com/mattnedrich/MeanShift_py

About the Mean Shift的更多相关文章

  1. shift粘滞键后门创建/复原批处理

    创建shift粘滞键后门: 1 c: 2 3 cd \Windows\System32\ 4 5 rename sethc.exe bak_sethc.exe 6 7 xcopy cmd.exe se ...

  2. Javascript——arguments的shift问题谈方法“借用”

    今天本来运行了打算这样的方法 arguments.shift() (shift方法是删除数组的第一个元素,例如var arr=[1,2,3,4,5]执行var a=arr.shift();之后,a的值 ...

  3. js中push(),pop(),unshift(),shift()的用法小结

    1.push().pop()和unshift().shift() 这两组同为对数组的操作,并且会改变数组的本身的长度及内容. 不同的是 push().pop() 是从数组的尾部进行增减,unshift ...

  4. eclipse通过ctrl+shift+t无法找到源文件类的解决方法

    通过ctrl + shift + t找对应的类时,类明明存在,并且也在编译路径下,但就是查找不到,一个可能的原因就是eclipse为类建立的索引出了问题. 解决的方法是:找到项目所在工作空间下的.me ...

  5. Javascript的shift()和push(),unshift()和pop()方法简介

    栈方法: Javascript为数组专门提供了push()和pop()方法,以便实现类似栈的行为.来看下面的例子: var colors=new Array();       //创建一个数组 var ...

  6. JS数组操作示意图(shift,unshift,pop,push)

    shift:删除原数组第一项,并返回删除元素的值:如果数组为空则返回undefined var a = [1,2,3,4,5]; var b = a.shift(); //a:[2,3,4,5] b: ...

  7. Bash:-:-通过while和shift判断脚本位置参数格式是否合法

    ]];then echo "请输入2个位置参数..." exit else num=$# ));do case ${num} in ) if ! echo "${1}&q ...

  8. Bash:-set设置位置变量结合while和shift使用

    #!/bin/bash aaa=( ) bbb=(a b c d) set -- ${aaa[@]} ));do } shift done set -- echo "------------ ...

  9. 小tip:关于typeof,instanceof,toString(),valueOf(),toLocaleString(),join(),reverse(),sort(),pop(),push(),shift(),unshift()

    typeof:用于检测一个变量是否是基本数据类型.instanceof用于检测某引用对象是什么类型的对象. var s = "Nicho"; var b = true; var n ...

  10. Shift的用法

    Shell编程中Shift的用法     位置参数可以用shift命令左移.比如shift 3表示原来的$4现在变成$1,原来的$5现在变成$2等等,原来的$1.$2.$3丢弃,$0不移动.不带参数的 ...

随机推荐

  1. mybatis 使用注解简化xml映射文件

    目录 关于mybatis注解 初次简单使用mybatis注解示例 利用注解实现指定映射 使用注解实现表间关联(1对1) 关于mybatis注解 注解在java中特别常见,mybatis中也支持注解. ...

  2. [转帖]SAP BASIS日常需要做的工作

    SAP BASIS日常需要做的工作 https://www.cnblogs.com/swordxia/p/4790684.html SAP Basis的一些日常工作包括用户权限管理.集团管理.数据库管 ...

  3. qrcode & vue

    qrcode & vue $ yarn add qrcode.vue # OR $ npm i -S qrcode.vue https://www.npmjs.com/package/qrco ...

  4. Djangon的坑

    <a href="/del_student/?pk={{ students.pk }}"></a> 在django中当你写入这样的语句是,pk={{ stu ...

  5. 使用with语句优化pymysql的操作

    一.with语句的好处 with语句的好处在于,它可以自动帮我们释放上下文,就比如文件句柄的操作,如果你不使用with语句操作,你要先open一个文件句柄,使用完毕后要close这个文件句柄,而使用w ...

  6. Elastic Search 语法总结

    1. 插入 PUT /megacorp/employee/1 { "first_name" : "John", "last_name" : ...

  7. django rest framework serializers序列化

    serializers是将复杂的数据结构变成json或者xml这个格式的 serializers有以下几个作用: - 将queryset与model实例等进行序列化,转化成json格式,返回给用户(a ...

  8. Vivado中VIO核使用

    前言 使用场景:在使用In system debug时需要使用按键触发查看相关信号,但不想用板子上的按键. VIO:Virtual input output,即虚拟IO. 主要用作虚拟IO使用:VIO ...

  9. CAN报文 Intel 格式与Motorola 格式的区别

    当一个信号的数据长度不超过 1 个字节(8 位)时,Intel 与 Motorola 两种格式的 编码结果没有什么不同,完全一样.当信号的数据长度超过 1 个字节(8 位)时,两者的编码结果出现 了明 ...

  10. 金融量化分析【day110】:Pandas的Series对象

    一.pandas简介安装 pandas是一个强大的python数据分析的工具包 pandsa是基于NumPy构建的 1.pandas的主要功能 1.具备对其功能的数据结构DataFrame.Serie ...