pro:给定N*M的矩阵,每次操作一个位置,它会增加2,周围4个位置会增加1。给定初始状态,求一种方案,使得最后的数都为0;(%3意义下。

sol:(N*M)^3的复杂度的居然过了。          好像标程是M^3的,因为第一排确定了,后面的都确定了。所以我们只要设关于第一排的方程,那么跑下来,第N+1排的都为0,则合法。

(此题由于3的特殊性,x关于3的逆元=x;所以不用求逆元

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int a[maxn][maxn],ans[maxn];
int x[]={,,,-};
int y[]={,-,,};
void Guass(int N)
{
rep(i,,N-){
int t=i;
rep(j,i+,N-) if(a[j][i]>a[t][i]) t=j;
if(i!=t) rep(j,i,N) swap(a[i][j],a[t][j]);
if(!a[i][i]) continue;
rep(j,i+,N-){
if(!a[j][i]) continue;
int t1=a[i][i],t2=a[j][i];//保留,不能直接带进去
rep(k,i,N)
a[j][k]=((a[j][k]*t1-a[i][k]*t2)%+)%;
}
}
for(int i=N-;i>=;i--){
a[i][N]=a[i][N]*a[i][i]%;
rep(j,,i-)
a[j][N]=((a[j][N]-a[i][N]*a[j][i])%+)%;
}
}
int main()
{
int T,N,M,S,t,p;
scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&M); S=N*M;
rep(i,,S) rep(j,,S) a[i][j]=;
rep(i,,N-) rep(j,,M-){
t=i*M+j;
scanf("%d",&a[t][S]);
a[t][S]=-a[t][S];
}
rep(i,,S-) a[i][i]=;
rep(i,,N-)
rep(j,,M-){
t=i*M+j;
rep(k,,) {
if(i+x[k]>=&&i+x[k]<N&&j+y[k]>=&&j+y[k]<M){
a[(i+x[k])*M+j+y[k]][t]=;
}
}
}
Guass(S);
int res=;
rep(i,,S-) res+=a[i][S];
printf("%d\n",res);
rep(i,,S-){
p=i/M+; t=i%M+;
if(a[i][S]) printf("%d %d\n",p,t);
if(a[i][S]==) printf("%d %d\n",p,t);
}
}
return ;
}

HDU - 5755:Gambler Bo (开关问题,%3意义下的高斯消元)的更多相关文章

  1. HDU 5755 Gambler Bo(高斯消元)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5755 [题目大意] 一个n*m由0,1,2组成的矩阵,每次操作可以选取一个方格,使得它加上2之后对 ...

  2. hdu 5755 Gambler Bo (高斯消元法解同余方程组)

    http://acm.hdu.edu.cn/showproblem.php?pid=5755 题意: n*m矩阵,每个格有数字0/1/2 每选择一个格子,这个格子+2,4方向相邻格子+1 如何选择格子 ...

  3. hdu 5755 Gambler Bo 高斯消元

    题目链接 给n*m的方格, 每个格子有值{0, 1, 2}. 然后可以对格子进行操作, 如果选择了一个格子, 那么这个格子的值+2, 这个格子上下左右的格子+1, 并且模3. 问你将所有格子变成0的操 ...

  4. HDU 5755 Gambler Bo

    可以设n*m个未知量,建立n*m个方程.位置i,j可以建立方程 (2*x[i*m+j]+x[(i-1)*m+j]+x[(i+1)*m+j]+x[i*m+j-1]+x[i*m+j+1])%3=3-b[i ...

  5. 【HDU 5833】Zhu and 772002(异或方程组高斯消元)

    300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案. 合法方案的每个数的质因数的个数的奇偶值异或起来为0. 比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3 ...

  6. 【HDU 5833】Zhu and 772002(异或方程组高斯消元讲解)

    题目大意:给出n个数字a[],将a[]分解为质因子(保证分解所得的质因子不大于2000),任选一个或多个质因子,使其乘积为完全平方数.求其方法数. 学长学姐们比赛时做的,当时我一脸懵逼的不会搞……所以 ...

  7. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  8. hdu 5755 2016 Multi-University Training Contest 3 Gambler Bo 高斯消元模3同余方程

    http://acm.hdu.edu.cn/showproblem.php?pid=5755 题意:一个N*M的矩阵,改变一个格子,本身+2,四周+1.同时mod 3;问操作多少次,矩阵变为全0.输出 ...

  9. HDU 4870 Rating(高斯消元 )

    HDU 4870   Rating 这是前几天多校的题目,高了好久突然听旁边的大神推出来说是可以用高斯消元,一直喊着赶快敲模板,对于从来没有接触过高斯消元的我来说根本就是一头雾水,无赖之下这几天做DP ...

随机推荐

  1. 2-Reverse Integer(简单)

    Description: Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123 Outp ...

  2. C# Thread IsAlive 理解

    IsAlive的功能就是判断当前线程是否处于活动状态. public class Program { public static void Main(string[] args) { try { Wr ...

  3. arrow function

    简介 JavaScript 中,函数可以用箭头语法(”=>”)定义,有时候也叫“lambda表达式”.这种语法主要意图是定义轻量级的内联回调函数.例如: // Arrow function: [ ...

  4. Html+css学习笔记一 创建一个网页

    第一个网页 新建一个记事本,把名字改成first.html <html> <head> <title>MyFristHtml</title> </ ...

  5. Android反编译apk并重新打包签名(Mac环境)

    工具下载 apktool :https://ibotpeaches.github.io/Apktool/install dex2jar:https://github.com/pxb1988/dex2j ...

  6. Unity配置安卓开发环境

    1. 首先要安装JDK,从网上下载即可,我用的版本如下图 注意:此时要保存JDK的路径信息,后面需要使用2. 配置环境变量,计算机右键点属性->高级->环境变量3. 在系统中新建环境变量 ...

  7. Python2.x爬虫入门之URLError异常处理

    大家好,本节在这里主要说的是URLError还有HTTPError,以及对它们的一些处理. 1.URLError 首先解释下URLError可能产生的原因: (1)网络无连接,即本机无法上网 (2)连 ...

  8. [Oracle][RMAN]关于Oracle RMAN里面的Merged Incremental Backups的Tag分离机能

    关于Oracle RMAN里面的Merged Incremental Backups的机能,RMAN使用的比较多的DBA们可能会有所了解. 基本上,每次都实行同样的Backup命令即可完成BACK. ...

  9. winfrom窗体中嵌套WPF控件

    前言 本文主要介绍如何在winfrom窗体中嵌套WPF控件, 一来是自己记录一下,而来希望能对有需要的朋友提供实现思路. 如有错误请指出...下面进入正题... -1.前期准备 准备一个建立好的win ...

  10. ffmpeg奇数分辨率转码失败

    偶然遇到将目的分辨率设置成奇数(例如:854x481)导致ffmpeg转码失败(错误:width not divisible by 2 (854x481)) 于是去查了一下原因:由于转码后的pix_f ...