题目链接

题意

给定序列,$q(1\leq q \leq 100000) $次询问,每次查询给定区间内的最大异或子集。

思路

涉及到最大异或子集肯定从线性基角度入手。将询问按右端点排序后离线处理询问,对线性基的每一位贪心的保留靠后的。

代码

#include <bits/stdc++.h>
#define DBG(x) cerr << #x << " = " << x << endl;

using namespace std;

const int N = 500000 + 5;

int n, m, a[N], ans[N], L = 1;
struct node {
    int l, r, id;
    bool operator < (const node & a) const {
        if(r != a.r) return r < a.r;
        return l < a.l;
    }
}b[N];

struct base {
    int b[21], pos[21];

    void add(int x, int id) {
        for(int i = 20; i >= 0; i--) {
            if((x >> i) & 1) {
                if(!pos[i]) {
                    b[i] = x, pos[i] = id;
                    return;
                }
                if(id > pos[i]) {swap(x, b[i]); swap(id, pos[i]);}
                x ^= b[i];
            }
        }
    }

    int query(int id) {
        int res = 0;
        for(int i = 20; i >= 0; i--) {
            if(pos[i] >= id && (res ^ b[i]) > res) res ^= b[i];
        }
        return res;
    }
}bs;

int main() {
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
    scanf("%d", &m);
    for(int i = 1; i <= m; i++) scanf("%d%d", &b[i].l, &b[i].r), b[i].id = i;
    sort(b + 1, b + 1 + m);
    for(int i = 1; i <= m; i++) {
        while(L <= b[i].r) bs.add(a[L], L), L++;
        ans[b[i].id] = bs.query(b[i].l);
    }
    for(int i = 1; i <= m; i++) printf("%d\n", ans[i]);
    return 0;
}

Codeforces 1100F(线性基+贪心)的更多相关文章

  1. Ivan and Burgers CodeForces - 1100F (线性基)

    大意: 给定n元素序列, m个询问$(l,r)$, 求$[l,r]$中选出任意数异或后的最大值 线性基沙茶题, 直接线段树暴力维护两个log还是能过的 #include <iostream> ...

  2. BZOJ 2460 & 洛谷 P4570 [BJWC2011]元素 (线性基 贪心)

    题目链接: 洛谷 BZOJ 题意 给定 \(n\) 个矿石,每个矿石有编号和魔力值两种属性,选择一些矿石,使得魔力值最大且编号的异或和不为 0. 思路 线性基 贪心 根据矿石的魔力值从大到小排序. 线 ...

  3. CodeForces - 1100F:Ivan and Burgers (线性基&贪心)(离线 在线)

    题意:给定N个数,Q次询问,求区间最大异或和. 思路:一开始想的线性基+线段树.单次线性基合并的复杂度为20*20,结合线段树,复杂度为O(NlogN*20*20):显然,超时. 超时代码: #inc ...

  4. 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心

    3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 839  Solved: 490[Submit][Stat ...

  5. 【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)

    bzoj3105,懒得复制 Solution: 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\ ...

  6. BZOJ.2460.[BeiJing2011]元素(线性基 贪心)

    题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...

  7. [bzoj 2460]线性基+贪心+证明过程

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2460 网上很多题目都没说这个题目的证明,只说了贪心策略,我比较愚钝,在大神眼里的显然的策略 ...

  8. bzoj 2460: [BeiJing2011]元素【线性基+贪心】

    先按魔力值从大到小排序,然后从大到小插入线性基中,如果插入成功就加上这个魔力值 因为线性基里是没有异或和为0的集合的,所以正确性显然,然后最优性,考虑放进去一个原来没选的,这样为了可行性就要删掉一个, ...

  9. bzoj 3105: [cqoi2013]新Nim游戏【线性基+贪心】

    nim游戏的先手必胜条件是所有堆的火柴个数异或和为0,也就是找一个剩下火柴堆数没有异或和为0的子集的方案,且这个方案保证剩下的火柴个数总和最大 然后我就不会了,其实我到现在也不知道拟阵是个什么玩意-- ...

随机推荐

  1. HBase实践案例:知乎 AI 用户模型服务性能优化实践

    用户模型简介 知乎 AI 用户模型服务于知乎两亿多用户,主要为首页.推荐.广告.知识服务.想法.关注页等业务场景提供数据和服务, 例如首页个性化 Feed 的召回和排序.相关回答等用到的用户长期兴趣特 ...

  2. HTML&CSS

    行内元素 <a>.<span>.<br>.<i>.<em>.<strong>.<label>.<q>.& ...

  3. day7-基础函数的学习(二)

    过了元旦,加油鸭,冲鸭!!! 闲话不说,开始今日份学习整理. 今日目录,今天的学习内容不是很多! 1.函数名的运用 2.闭包(重要) 3.迭代器(重要) 开始今日份总结 1.函数名的运用 1.1函数名 ...

  4. B. Obtaining the String(模拟)

    比较水的模拟 思路:就是模拟题意 注意:把数组开大点,开始wa了几次就是这个原因 #include<iostream> #include<string> #include< ...

  5. SpringBoot中使用Servlet,Filter,Listener

    项目最近在替换之前陈旧的框架,改用SpringBoot进行重构,初接触,暂时还没有用到Servlet,Filter,Listener的地方,但在之前回顾Servlet的生命周期时,https://ww ...

  6. 控制结构(2): 卫语句(guard clause)

    // 上一篇:分枝/叶子(branch/leaf) // 下一篇:状态机(state machine) 基于语言提供的基本控制结构,更好地组织和表达程序,需要良好的控制结构. 典型代码: 同步版本 f ...

  7. Linux 默认连接数

    Linux 默认连接数 - 国内版 Binghttps://cn.bing.com/search?FORM=U227DF&PC=U227&q=Linux+%E9%BB%98%E8%AE ...

  8. fedora上安装ffmpeg

    环境 fedora26 1. 安装 yasm sudo dnf install yasm yasm-devel -y 2.安装 ffmpeg 官方下载ffmpeg源码  ( http://ffmpeg ...

  9. python之反射和内置函数__str__、__repr__

    一.反射 反射类中的变量 反射对象中的变量 反射模块中的变量 反射本文件中的变量 .定义:使用字符串数据类型的变量名 来获取这个变量的值 例如: name = 'xiaoming' print(nam ...

  10. linux下find命令的使用和总结

    背景:find命令十分的好用,特别是在查找文件的时候,这个时候需要和文件通配符一起使用. 1 前言 我们为什么要学会使用find命令? 每一种操作系统都有成千上万的文件组成,对于linux这样“一切皆 ...