[再寄小读者之数学篇](2014-06-27 向量公式: The Hall term)
$$\bex \n\cdot{\bf b}=0\ra \n\times [(\n\times {\bf b})\times {\bf b}]=\n\times [\n\cdot ({\bf b}\otimes {\bf b})]. \eex$$
证明: 右端第一个分量为 $$\beex \bea &\quad \sum_i \p_2(\p_i(b_ib_3))-\p_3(\p_i(b_ib_2))\\ &=\sum_i \p_2(b_i\p_ib_3)-\p_3(b_i\p_ib_2)\\ &=\sum_i \p_2b_i\p_ib_3-\p_3b_i\p_ib_2\\ &\quad +\sum_ib_i\p_i(\p_2b_3-\p_3b_2)\\ &=\p_2b_1\p_1b_3+\p_2b_2\p_2b_3+\p_2b_3\p_3b_3\\ &\quad-\p_3b_1\p_1b_2-\p_3b_2\p_2b_2-\p_3b_3\p_3b_2\\ &\quad+({\bf b}\cdot\n)j_1\\ &=\p_2b_1\p_1b_3-\p_2b_3\p_1b_1\\ &\quad -\p_3b_1\p_1b_2+\p_3b_2\p_1b_1\\ &\quad+({\bf b}\cdot\n)j_1\\ &=\p_2b_1\p_1b_3 -\p_3b_1\p_1b_2 -j_1\p_1b_1 +({\bf b}\cdot\n)j_1\\ &=-(\p_3b_1-\p_1b_3)\p_2b_1 -(\p_1b_2-\p_2b_1)\p_3b_1 -j_1\p_1b_1+({\bf b}\cdot\n)j_1\\ &=-j_2\p_2b_1-j_3\p_3b_1-j_1\p_1b_1 +({\bf b}\cdot\n)j_1\\ &=-({\bf j}\cdot\n)b_1+({\bf b}\cdot\n)j_1. \eea \eeex$$ 利用公式 (link) $$\bex \n\times({\bf a}\times{\bf b})=({\bf b}\cdot\n){\bf a} -({\bf a}\cdot\n){\bf b}+{\bf a}(\n\cdot{\bf b})-{\bf b}(\n\cdot{\bf a}), \eex$$ 我们知 $$\bex \n({\bf j}\times {\bf b})=({\bf b}\cdot\n){\bf j}-({\bf j}\cdot\n){\bf b}. \eex$$ 而左端的第一项也为 $-({\bf j}\cdot\n)b_1+({\bf b}\cdot\n)j_1$. 故有结论.
see [D. Chae, M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Differential Equations, 255 (2013), 3971--3982].
[再寄小读者之数学篇](2014-06-27 向量公式: The Hall term)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- 第一节 anaconda+jupyter+numpy简单使用
数据分析:是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律 数据分析三剑客:Numpy,Pandas,Matplotlib 一 Anaconda 1 下载 官网:http ...
- 【Teradata SQL】FALLBACK表改为NO FALLBACK表
FALLBACK表在数据库中会留存双份数据,增加了数据可用性,但浪费了存储空间.变更表属性语句如下: alter table tab_fallback ,no fallback;
- uml类图关系
原文地址http://www.jfox.info/uml-lei-tu-guan-xi-fan-hua-ji-cheng-shi-xian-yi-lai-guan-lian-ju-he-zu-he 在 ...
- RabbitMQ安装后无法访问https://localhost:15672/ 控制台问题解决
1.安装完后 我们进入到我们安装到 sbin目录C:\Program Files\RabbitMQ Server\rabbitmq_server-3.7.2\sbin执行:rabbitmq-plugi ...
- 《JAVA程序设计》_第五周学习总结
一.本周学习内容 1.接口--6.1知识 接口的声明 interface 接口名 接口体 只有常量和抽象方法 (用final.static.public修饰的变量,关键词可省略) (用abstract ...
- (五)Cluster Health
Let’s start with a basic health check, which we can use to see how our cluster is doing. We’ll be us ...
- [SCOI2016]萌萌哒
Luogu P3295 mrclr两周前做的题让蒟蒻的我现在做? 第一眼组合计数,如果把数字相同的数位看作一个整体,除了第一位不能为零,剩下的每一位都有$0$~$9$十种. 设不同的位数为$x$,那么 ...
- 第二部分之RDB持久化(第十章)
RDB持久化功能所生成的RDB文件是一个经过压缩的二进制文件,通过该文件可以还原生成RDB文件时的数据库状态.(数据库状态:服务器中的非空数据库以及它们的键值对统称为数据库状态) 一.RDB文件的创建 ...
- 【学习总结】GirlsInAI ML-diary day-12-for循环
[学习总结]GirlsInAI ML-diary 总 原博github链接-day12 认识for循环执行 ps: range()函数 python range() 函数可创建一个整数列表,一般用在 ...
- 用Python开发小学二年级口算自动出题程序
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 武汉光谷一小二年级要求家长每天要给小孩出口算题目,让孩子练习. 根据老师出题要求编写了Python程序 ...