tensorflow--交叉熵
学而不思则罔,思而不学则怠。
最近在看《TensorFlow 实战Google深度学习框架第二版》这本书。从头开始学习深度学习,对于细节方面进行探究。相当于重新拾起来这门”手艺“。
这篇随笔重点是交叉熵。在本书中出现的位置是62页,章节是3.4.5完整神经网络样例程序的20行附近(可能空行不一致),这里示例代码中出现了损失函数,代码如下:
import tensorflow as tf
from numpy.random import RandomState batch_size = 8 w1 = tf.Variable(tf.random_normal((2,3), stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal((3,1), stddev=1, seed=1)) #定义输入的张量,第一维设为None,方便变化
x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input') a = tf.matmul(x, w1)
y = tf.matmul(a, w2) #cross_entropy就是损失函数
y = tf.sigmoid(y)
cross_entropy = -tf.reduce_mean(
y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0))
+ (1-y_)*tf.log(tf.clip_by_value(1-y, 1e-10, 1.0)))
我们可以看到18行这里是我修改过的代码,根据交叉熵的理论,在这个例子中交叉熵的公式应该为
loss = -y *log(y_)-(1-y)log(1-y_)
应该是二值分布。不过书中给的代码有谬误,20行中1-y_写成了1-y。
参考博客https://www.cnblogs.com/qggg/p/6850120.html
如果本文有理解错误的地方还请评论指正,你的帮助是我进步的动力。
tensorflow--交叉熵的更多相关文章
- 『TensorFlow』分类问题与两种交叉熵
关于categorical cross entropy 和 binary cross entropy的比较,差异一般体现在不同的分类(二分类.多分类等)任务目标,可以参考文章keras中两种交叉熵损失 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵
TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激 ...
- 机器学习之路:tensorflow 深度学习中 分类问题的损失函数 交叉熵
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q( ...
- TF Boys (TensorFlow Boys ) 养成记(五): CIFAR10 Model 和 TensorFlow 的四种交叉熵介绍
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...
- Tensorflow手写数字识别(交叉熵)练习
# coding: utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #pr ...
- 5 TensorFlow实战Google深度学习框架一书中的错误两处(交叉熵定义有误)
第一处: 书中62页定义的交叉熵函数定义有误,虽然这个所谓交叉熵的数值能够减少,但是是不能提升预测性能的,因为定义就错了. 我已经将预测过程可视化,直接将交叉熵改为我的,或者用原书的,就可以看到预测结 ...
- TensorFlow 实战(一)—— 交叉熵(cross entropy)的定义
对多分类问题(multi-class),通常使用 cross-entropy 作为 loss function.cross entropy 最早是信息论(information theory)中的概念 ...
- 经典损失函数:交叉熵(附tensorflow)
每次都是看了就忘,看了就忘,从今天开始,细节开始,推一遍交叉熵. 我的第一篇CSDN,献给你们(有错欢迎指出啊). 一.什么是交叉熵 交叉熵是一个信息论中的概念,它原来是用来估算平均编码长度的.给定两 ...
- 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...
随机推荐
- NodeJs之EXCEL文件导入导出MongoDB数据库数据
NodeJs之EXCEL文件导入导出MongoDB数据库数据 一,介绍与需求 1.1,介绍 (1),node-xlsx : 基于Node.js解析excel文件数据及生成excel文件. (2),ex ...
- [转帖]Zoom
Zoom美国上市:华裔创始人为大股东 创业想法来自“异地恋” https://baijiahao.baidu.com/s?id=1631166070308020680&wfr=spider&a ...
- Django3 Django 路由分发,反向解析,2.0版本的path
urls配置像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映射表:你就是以这种方式告诉Django,对于客户端发来的某个URL调用哪一段逻辑代码对应执行. 1.简 ...
- Vue.js 2.x笔记:组件(5)
1. 组件简介 组件(Component)是 Vue.js 最强大的功能之一,组件可以扩展 HTML 元素,封装可重用的代码. 组件:为了拆分Vue实例的代码量,以不同的组件来划分不同的功能模块,需要 ...
- centos7服务器配置nuxt部署环境
一.安装node(默认安装在根目录下) 1.首先安装wget yum install -y wget 2.下载最新nodejs安装包 wget https://nodejs.org/dist/v10. ...
- logback输出json格式日志(包括mdc)发送到kafka
1,pom.xml <!-- kafka --> <dependency> <groupId>com.github.danielwegener</groupI ...
- mac与windows共享键盘鼠标(synergy)
桌面上有两台电脑, 一台mac一台windows, 由于桌面空间紧张, 放两套键盘鼠标有点浪费空间, 如果能让mac和windows共享键盘鼠标就好了, 经过一番搜寻, 找到了一款名为synergy的 ...
- C#调用Java的WebService添加SOAPHeader验证
C#调用Java的WebService添加SOAPHeader验证(2) 1.问题描述 调用的Java的webservice string Invoke(string func, string req ...
- Java发布webservice应用并发送SOAP请求调用
webservice框架有很多,比如axis.axis2.cxf.xFire等等,做服务端和做客户端都可行,个人感觉使用这些框架的好处是减少了对于接口信息的解析,最主要的是减少了对于传递于网络中XML ...
- 如何设置Maven代理
1.公司的网络走的是代理,那么如何设置maven下载jar包时也走代理呢. 根据百度出来的两篇文章 设置了一下,但是还是报错. Plugin org.apache.maven.plugins:mave ...