I/O密集型 (CPU-bound) 
I/O bound 指的是系统的CPU效能相对硬盘/内存的效能要好很多,此时,系统运作,大部分的状况是 CPU 在等 I/O (硬盘/内存) 的读/写,此时 CPU Loading 不高。
CPU bound 指的是系统的 硬盘/内存 效能 相对 CPU 的效能 要好很多,此时,系统运作,大部分的状况是 CPU Loading 100%,CPU 要读/写 I/O (硬盘/内存),I/O在很短的时间就可以完成,而 CPU 还有许多运算要处理,CPU Loading 很高。

计算密集型 (CPU-bound) 
在多重程序系统中,大部份时间用来做计算、逻辑判断等CPU动作的程序称之CPU bound。例如一个计算圆周率至小数点一千位以下的程序,在执行的过程当中

绝大部份时间用在三角函数和开根号的计算,便是属于CPU bound的程序。
It is because the performance characteristic of most protocol codec implementations is CPU-bound, which is the same with I/O processor threads.

根据以上分析,可以认为通常情况下,大部分程序针对某个特定的性能metric而言
都可分为CPU bound 和 I/O bound两类。
CPU bound的程序一般而言CPU占用率相当高。这可能是因为任务本身不太需要访问I/O设备,也可能是因为程序是多线程实现因此屏蔽掉了等待I/O的时间。
而I/O bound的程序一般在达到性能极限时,CPU占用率仍然较低。这可能是因为任务本身需要大量I/O操作,而pipeline做得不是很好,没有充分利用处理器能力

转自http://blog.chinaunix.net/space.php?uid=13714918&do=blog&id=2875404

进程 vs. 线程


我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。

首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。

如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。

如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker。

多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)著名的Apache最早就是采用多进程模式。

多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。

多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。在Windows上,如果一个线程执行的代码出了问题,你经常可以看到这样的提示:“该程序执行了非法操作,即将关闭”,其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。

在Windows下,多线程的效率比多进程要高,所以微软的IIS服务器默认采用多线程模式。由于多线程存在稳定性的问题,IIS的稳定性就不如Apache。为了缓解这个问题,IIS和Apache现在又有多进程+多线程的混合模式,真是把问题越搞越复杂。

计算密集型 vs. IO密集型

是否采用多任务的第二个考虑是任务的类型。我们可以把任务分为计算密集型和IO密集型。

计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。

计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。

第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。

IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。

总之,计算密集型程序适合C语言多线程,I/O密集型适合脚本语言开发的多线程。

原文出处:http://blog.csdn.net/q_l_s/article/details/51538039

CPU-bound(计算密集型) 和I/O bound(I/O密集型) 区别 与应用的更多相关文章

  1. [转]CPU-bound(计算密集型) 和I/O bound(I/O密集型)

    转自:http://blog.csdn.net/q_l_s/article/details/51538039 I/O密集型 (CPU-bound) I/O bound 指的是系统的CPU效能相对硬盘/ ...

  2. CPU-bound(计算密集型) 和I/O bound(I/O密集型)

    概念 概念I/O系统,英文全称为“Input output system”,中文全称为“输入输出系统”,由输入输出控制系统和外围设备两部分组成,是计算机系统的重要组成部分.在计算机系统中,通常把处理器 ...

  3. PU-bound(计算密集型) 和I/O bound(I/O密集型)

    转载:https://blog.csdn.net/q_l_s/article/details/51538039 I/O密集型 (CPU-bound) I/O bound 指的是系统的CPU效能相对硬盘 ...

  4. CPU-bound(计算密集型) 和I/O bound(I/O密集型)/数据密集型

    https://blog.csdn.net/q_l_s/article/details/51538039 I/O密集型 (CPU-bound)I/O bound 指的是系统的CPU效能相对硬盘/内存的 ...

  5. CPU TFLOPS 计算

    CPU TFLOPS 计算 姚伟峰 yaoweifeng0301@126.com] http://www.cnblogs.com/Matrix_Yao/ 深度学习任务是一个计算密集型任务,所以很关注计 ...

  6. Linux下如何查看高CPU占用率线程 LINUX CPU利用率计算

    目录(?)[-] proc文件系统 proccpuinfo文件 procstat文件 procpidstat文件 procpidtasktidstat文件 系统中有关进程cpu使用率的常用命令 ps ...

  7. cpu时间 / cpu利用率计算

    CPU时间即反映CPU全速工作时完成该进程所花费的时间 cpu时间计算CPU TIME = (# of CPU Clock Cycles) x Clock Period     // “#” 表示消耗 ...

  8. CPU使用率计算

    昨天接到临时任务,需要将一个工作线程执行真正工作的时机推迟到CPU空闲时执行.当时第一感觉认为是将线程优先级设置为空闲级别就行了,以为只有CPU空闲下来才会去跑这个线程,实际上应该不是,毕竟即时是空闲 ...

  9. CPU怎么计算1+1----CPU计算的电路基础

    从<十进制和二进制的运算---我所理解到的人类的运算的本质>这里我们知道,人类进行运算的本质是查表,并且我们存储的表是有限的.那么计算机是怎进行四则运算的呢,也是查表吗,肯定不是,今天,我 ...

随机推荐

  1. Go 基准测试

        文章转载地址:https://www.flysnow.org/2017/05/21/go-in-action-go-benchmark-test.html 什么是基准测试?      基准测试 ...

  2. Gradle 依赖管理

    依赖管理(在 build.gradle 中): 1.定义依赖仓库(repositories): Gradle 要求至少定义一个依赖仓库,依赖仓库可以是文件系统,也可以是中心服务器.最常用的是 jcen ...

  3. vue中前端处理token过期的方法与axios请求拦截处理

    在处理token过期的这个问题上困扰了我很久,现在终于解决的了,所以分享出来给大家,希望能够对大家有所帮助. 首先,当然是路由进行拦截,路由拦截当然是在beforeEach中了: router.bef ...

  4. spring环境搭建

    1.导入jar包: 2.配置文件 — applicationContext.xml:  添加schema约束,位置:spring-framework-3.2.0.RELEASE—>docs—&g ...

  5. oralce问题

    死锁,如果较多使用存储过程杀死 create or replace procedure killer is    v_obj varchar2(200);    v_sql varchar2(500) ...

  6. python+selenium的web自动化测试之一(手工执行)

    环境 Windows 前提: 1. python已正常安装 2. selenium已正常安装. 如果没安装,会报:ImportError: No module named 'selenium' (参考 ...

  7. android --- api json数据

    「一个」.「Time 时光」.「开眼」.「一席」.「梨视频」.「微软必应词典」.「金山词典」.「豆瓣电影」.「中央天气」.「魅族天气」.「每日一文」.「12306」.「途牛」.「快递100」.「快递」 ...

  8. leetcode-979-树

    https://leetcode.com/problems/distribute-coins-in-binary-tree/ n个硬币随机分布在n个点上,要求每个点都拥有一个硬币,问最小的花费. 对每 ...

  9. Django中 media资源配置

    # 用户上传的文件可以在外网通过接口直接访问 配置媒体跟路由: settings.py 用来存放用户上传的静态文件,可以对外公开的文件!!! MEDIA_ROOT = os.path.join(BAS ...

  10. SQL语句全解,非常棒!

    链接自W3school非常详细的SQL教程 http://www.w3school.com.cn/sql/index.asp