ReLU激活函数的缺点
例如,一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了,那么这个神经元的梯度就永远都会是 0.
如果 learning rate 很大,那么很有可能网络中的 40% 的神经元都”dead”了。
假设有一个神经网络的输入W遵循某种分布,对于一组固定的参数(样本),w的分布也就是ReLU的输入的分布。假设ReLU输入是一个低方差中心在+0.1的高斯分布。
在这个场景下:
- 大多数ReLU的输入是正数,因此
- 大多数输入经过ReLU函数能得到一个正值(ReLU is open),因此
- 大多数输入能够反向传播通过ReLU得到一个梯度,因此
- ReLU的输入(w)一般都能得到更新通过随机反向传播(SGD)
现在,假设在随机反向传播的过程中,有一个巨大的梯度经过ReLU,由于ReLU是打开的,将会有一个巨大的梯度传给输入(w)。这会引起输入w巨大的变化,也就是说输入w的分布会发生变化,假设输入w的分布现在变成了一个低方差的,中心在-0.1高斯分布。
在这个场景下:
- 大多数ReLU的输入是负数,因此
- 大多数输入经过ReLU函数能得到一个0(ReLU is close),因此
- 大多数输入不能反向传播通过ReLU得到一个梯度,因此
- ReLU的输入w一般都得不到更新通过随机反向传播(SGD)
发生了什么?只是ReLU函数的输入的分布函数发生了很小的改变(-0.2的改变),导致了ReLU函数行为质的改变。我们越过了0这个边界,ReLU函数几乎永久的关闭了。更重要的是ReLU函数一旦关闭,参数w就得不到更新,这就是所谓的‘dying ReLU’。
(译者:下面有一段关于神经元死亡后能够复活的讨论,未翻译)
从数学上说,这是因为ReLU的数学公式导致的
r(x)=max(x,0)r(x)=max(x,0)
导数如下
Δxr(x)=1(x>0)Δxr(x)=1(x>0)
所以可以看出,如果在前向传播的过程中ReLU is close,那么反向传播时,ReLU也是close的。
ReLU激活函数的缺点的更多相关文章
- RELU 激活函数及其他相关的函数
RELU 激活函数及其他相关的函数 转载 2016年07月21日 20:51:17 45778 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 更多相关博客 ...
- tensorflow Relu激活函数
1.Relu激活函数 Relu激活函数(The Rectified Linear Unit)表达式为:f(x)=max(0,x). 2.tensorflow实现 #!/usr/bin/env pyth ...
- MINST手写数字识别(三)—— 使用antirectifier替换ReLU激活函数
这是一个来自官网的示例:https://github.com/keras-team/keras/blob/master/examples/antirectifier.py 与之前的MINST手写数字识 ...
- ReLU激活函数:简单之美
出自 http://blog.csdn.net/cherrylvlei/article/details/53149381 导语 在深度神经网络中,通常使用一种叫修正线性单元(Rectified lin ...
- ReLU激活函数
参考:https://blog.csdn.net/cherrylvlei/article/details/53149381 首先,我们来看一下ReLU激活函数的形式,如下图: 单侧抑制,当模型增加N层 ...
- 深度学习基础系列(三)| sigmoid、tanh和relu激活函数的直观解释
常见的激活函数有sigmoid.tanh和relu三种非线性函数,其数学表达式分别为: sigmoid: y = 1/(1 + e-x) tanh: y = (ex - e-x)/(ex + e-x) ...
- Relu激活函数的优点
Relu优点: 1.可以使网络训练更快. 相比于sigmoid.tanh,导数更加好求,反向传播就是不断的更新参数的过程,因为其导数不复杂形式简单. 2.增加网络的非线性. 本身为非线性函数,加入到神 ...
- tf.nn.relu 激活函数
tf.nn.relu(features, name = None) 计算校正线性:max(features, 0) 参数: features:一个Tensor.必须是下列类型之一:float32,fl ...
- 激活函数(ReLU, Swish, Maxout)
神经网络中使用激活函数来加入非线性因素,提高模型的表达能力. ReLU(Rectified Linear Unit,修正线性单元) 形式如下: \[ \begin{equation} f(x)= \b ...
随机推荐
- youtube-dl下载youtube视频时查看分辨率以及选择分辨率下载
1.查看分辨率: youtube-dl -F https://www.youtube.com/watch?v=_NMf1TpiFwY 2.根据分辨率下载,比如下载1280*720的mp4,前面的数字是 ...
- ssh报错 WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!
今天登陆远程主机的时候,出现如下的报错信息 ssh 10.0.0.1 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ WAR ...
- python运算符——逻辑运算符
not命令是取反命令,真的变成假的,假的变成真的(True是真的,False是假的) b = Trueprint(not b) 原本是真的,但是加了“not”指令就变成了假的,not指令是一元运算符, ...
- json,HTTP协议
JSON 语法规则 JSON 语法是 JavaScript 对象表示语法的子集. 数据在名称/值对中 数据由逗号分隔 大括号保存对象 中括号保存数组 JSON 对象 JSON 对象使用在大括号({}) ...
- ArrayList Vector
100000条数据时:测了4次,分别是9ms/13ms:8ms/6ms:8ms/6ms:8ms/6ms[其中/前为ArrayList数据,/后为Vector数据]1000000条数据时:测了4次,分别 ...
- python基础篇_004_装饰器函数
python装饰器函数 1.装饰器函数引导 功能:计算函数执行时长 import time """ 方式一: 函数首位添加时间,差值就是函数执行时间 缺点:每个函数都要加 ...
- Tomcat Getshell
安装环境 账号密码路径:Tomcat6.0/conf/tomcat-users.xml 弱口令扫描工具 后台默认登陆地址:html://xx.xx.xx.xx/manager/html 后台war f ...
- [Sublime]Sublime安装以及插件使用
安装直接去官网下载安装了 安装Package Control关于安装Package Control,有两种方法. 一.自动安装 自动安装很方便,网上代码很多.我用的是Sublime Text3,通过V ...
- ARC 103
目录 官方题解 C 官方题解 C 这道题教会了我怎样正确统计众数和第二众数........... 我之前的方法是错的 #include <bits/stdc++.h> using name ...
- 英语口语练习系列-C35-马戏-谈论语言-己亥杂诗
词汇-马戏 circus audience spectator spotlight bandstand magic magician clown spacious attractive product ...