ECharts使用:this.dom.getContext is not a function
echarts 画图报错 this.dom.getContext is not a function;
原因:因为在初始化echarts的时候,echarts.js规定只能使用dom原生方法获取标签,即document.getElementById('main');
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA1AAAADLCAYAAABgUnIsAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAExaSURBVHhe7b3fj2zZdd83/wj/gLxYDyPAUGwlikUPE9hKEGAUO3mgTBCJkICYESHrEuJoAJsPND2xDdKyJYNgEELUPEjACHy5EGNkfANBxowmGk0sXksjXUkzIuFwfkkeKJJCW6bK/el7vz3fXnftc3ZV162u7v5u4IOqs/faa6+996lT69unuuqxzSWW997bbD7ykc3mZ3/2/jGPn/nMB/W//Mv36ynUP3YSrYMNtirY/PAPbzZ/+qcfHENXGKv2p7z++mbzXd/1QUyU6pdCbDUe8JgpXV8Vxuh8gPpgU/vXddumEB/zY5610NatSbcfa+WLX/zi5rOf/ezm29/+9oOazeb27dubp59+evP+++8/qNls3njjjc3HPvaxzWuvvfag5uGyZkM97dh56WKYKReNiXnWcZkzc6eNwuOTTz7Z4n3rmnW+1wq29GE9RoV51L2hKG7aR366dV5aH/ns5g7qM3sOzcxvpjDuWjx1DJ9njcNjpb07R0f13fpp3fC7TSEeX7Pqe3ZfZVfXx21qH0rds86mlhk/FOZQ4wHqFW+3XtTJf7cHdY1mbLx09rNlyW9XRueF5r+0ryMbYnjqqacein9t72ive6E9U5x1Xr6vvm4+r1GcFO/vpduD0dqO6lUYQ/PpYlBZWx+N4+sDde/W/Kj4GtWiNvzXdfDSrVNXlsaaiVd7qDmP1poy2tNaRnYze0/MdS87G8VbqX19vbs1Wit1bMpozbv5qfiauM+Rr1F9yno5SdUvr1QhwDFi4bd+63zCjgipST99arJP+xNP3H9cS/q7/hT1czFT7fBJvQsYCa863pqA6mLwgk0E1LLN6GLSXSBnCnGuvRks2XRt9SLVrUVX1I856g1IPmaL+i2tBf67eLrxq59ur5f2rK7FqHR+u3Wbmd9aIc76xlfngP86htvUODxW2rtzdFTfrd/sutWCvb/x13nO7Kts6tq7TXdM8XWgdDa1zPhhbZb2TDF7uwp18t/tQV3/GRsvnf1sWfLbldF5ofmzll58bUc2XfwaZxQXPmof37NRf7fxcX1eozgp3t9LN4fR2uJDa7JU6KfXUGfva1uLxvY5+By9LPnxMurvRWunuOvcu3XqytJYs/GqYK94qj/FuzQnFWx23Xti8L2gdDaz81Jf5lT9zpQ6NmW05kt75mviPke+lvY1ZbkclYCiIDi++tUPEnaEAwKCei+d+JAtbfQdCRdK159C/VI/Std3FwGF7UjMqCyNRdu2ZWnM0Rxm4qylu/B0F7vuolHLmk13MdnmIuxlpt+azdI81WfpAliLLvTYPvPMM+f8zpa1N4LRGnucmnd9c+h8j/xRRn5q6fx2azvrb6ks7Znm0MVDm5KSGof79HX0Mqrv1g8/+NM5NFPUx/3UMlo/n+9o7Lom3RrVte3WupZd/czsGc+po43S7UH1M2PjpbOfLaO1HpWRfZ2niq/JyKZbW+ZU61Rm/IzipI9sfN3cfuSf0sVKmd0z+a5xLZXR/vra1tL1WVqTkR8vo/5dGa3haC61LI012oO10s2TOLq7n10ZjTuz993YtLnInJ2X1gafdZzZ0vUbrTk2oz3zmN3nyNeoPmW9HJ2AIkn/sR+7X69EvooQ7Ls7QxTasMXHksCgbdS/q/dSBYWEBzFV8YG/kfiQ4FsaT741Fx9raX6jUv156eLhkeMqYNdKd3HqLkZ68daLupc1m+5igm0diyJfXRsFX6M2lTUbXbR0QdKx/7VNb2ZrY1E03le+8pXFdaJt9NcvxeBtjPvCCy+cPu/i4ZFj9ZFN9c9x3evatxbm5OvRlc5vdw5RsO3qvWgN6rlCqeeQ7xltFMVcj1VX18djpX1mXBWNr7EoWtNuzRiTOOp6L/XxUtda/lRX50apNqrzY0rdM8XkdjxyLm7jp67d0p75/Hnu/bo9qOs/OvaxvHQ+vWgNRv2JsbbxvLNd2uO6jnXPgOfUq2hu7k923RgqdSzNwfcMm3rsNr5uPq8uThXa3aeK+1LR3Oq6dv2XymhM6kf7XsfW/Jg//bws+fHia7RWRraKa83H0lhq8/3n0V/TtYz2lONun7tCLIzL+F5m9p5Hf43p2Ou6eXWFeD0O4ur2T/58DJUaH0X22+yZr4n7HPka1aesl6MTUEriXYzIjjqg/Z//8154yLZrc/FRUQw+fsXFEYJC9fikjTGrgKK4LYzm67gfnqueMb75zft9dhFQFPcH+CIOlaV4ZwsXlHrR8Re2F73IdfHa1sYvfGJ0wdPFohuDMnPxnrHxmBjrrbfeOo3JL1J6A/G4oV5YZcf8WYeuuK9RbJq7xunWgL5qhy7e6p9j6ut6r+3r2r51fkfnkM9f1HXUeKN19Lljgz1juR/Glw3jsa+yqevjsdKuces+OOqrtfOx1c/3hOJzV38v+KjjgK9tjYkxwG3qfjJWtaHOjym+DioeM9Q9mfWDnftgrtj4utW4qw/fG5Vu/Rnffbz55pvnxqpr6NR98Zh8DC/UL/nwuTs+vxoTc+j2zPtDjYl41+4K1LEY46WXXjoXT913YmEs2fBceyF/2Kif1sDXr4I9xX2pqJ/PD591bb10Y/mcaqnrqXgoPPc21od5uY3Kkp/aJjyuzqYbh8J6uN3a+QF1Dere1rWvcwd8e9Ge+/7Uss+995iI3a/nKorJx5Fvn7P3Uf0ohmpP6eLT2N2+Yecxac+w1d64z+prdl9TxuUkPU7xgniogoJCfSfKUi6/cHGoF6pdSncBq2XGJiXlWMrofFV998acklILyZYStOtUcj0/ruLJf0rKsZcIKCu6G1QF1Kg+5eHyR3/0R+1fNR4VFBdQnU0INxG9NnheE8Ra7/1CCCHcXD7xiU+cvi+kLJcIqFLqxwUFd6BSjrO4gEpJSTlf+KtufYPM6yUlJSUlJWX3EgGVkpKSkpKSkpKSkpIyWSKgUlJSUlJSUlJSUlJSJksEVEpKSkpKSkpKSkpKymSJgEpJSUlJSUlJSUlJSZksj21+4zc2IYQQQgghhBDWeWzD9+2HEEIIIYQQQlglAiqEEEIIIYQQJomACiGEEEIIIYRJIqBCCCGEEEIIYZIIqBBCCCGEEEKYJAIqhBBCCCGEECaZFlD/4Vvf2vzh//l/bH7nk5/Y/Kvv/YubX/sL/8nmX/3lv3h6TD3tXb8QQgghhBBCuC5MCajvvP325nc+/WOb3//e79u89T3/+ead7/kvTvi+00eOqf+dZ25tvvPO223/sAW3b282H/rQZvMrv9K3h5vNNufH7/7uZvPd333480nj/pN/0reHmwd/YPvBH9xsHnvs/jnc2YQ59PpiLeHY3y+y9yGEa8iqgPoPb721+d2f+PHNN77nezfvngimd//Tv3L/UTw4pv13n/30qX3nZ6/wZvH44w+/aXDMm8lVvkjPJsh6U/qRH+nb1/A3tY7LelMm6e7i2XWeV421fY2AOiyz1xT2y8/XRzX3i77ut4VxGI9xu/ZZ/HpzVa7Ps3t/SA69/2vMnB9Xce9DCGGFVQH1/v/1Lzbf+L4P3xdLf+n7N+//L09v3v3LJ8cIp5PH0+OT+lMRdWL3/p1/0fpZ4t+/++7m/W9+c/Pn//bftu0PwRtbBNR+30hJ+NbeCA8BcZB8k4R37dedtX2dPT8uk5skoDTX+tph7o/iOrTv1/0aMwnydeUY30+IqXvvuyxu8vkRQrjRrAqo3/+JZzZv/aX7d5re/59/ZPOdP/iDzR//wy9s3vurP7D5//7Xz2++84d/eCKifuS0/a0Tfv/ZZ1s/S7z3xhubf/jcc5tv/uZvzomo0ZvIMb7hbctsgrzvRCoC6jhY29fZ8+MyuUkCin065Pm679f9Gjc5QT7G95Nje/3f5PMjhHCjWRVQr//Af7N558HH9LjjhGj68z/5k82f/da908c//kf/+P4dqZN27H7zxL7zs8Q7J8nH008/vfnkJz+5ufOLv7j5/99e+V8q3jzWBJQSDZI40EdrRskObwSy6d6g8Kn2zk/3RtKJAY/FUULEOPR55ZX7j2rXm7jm6H0d2W0LcdX4tYbdG6TPTftx5859W8WiOTm+zl283ZpVFOvdu+fXiPptbKDua52r9gM/a3OTr65tjdl9VTyj8wNYO2/jebee2l/ZQZ3/LHVfwde6G8tj1n597nP323jO+cSajOJfoosHPKa65j537Lyfo3i0zvWc6tC5Ieo6j/ZVvrd53de1ph/91a618bg1F/jVXz0fQ2VmvmItFqeu+ZJth8bCj/tiLvX8WdqPGofT+VqjjrWLD4Gv0bp0bTynTucHx7PXavWtNjpXVF/R+XGRvfd4ttnXEEI4EOsC6vs/cvplEacC6kQgvfdX//rmz37ztzab73xn82f3fmfz3hP/9dn/QWH3+vf/l62fJRBQTz311Ck/+qM/uvmnX/jC8t0ovQnUi7Eu+LxZ+MW7Xvi7i7NfjKkjkeNRfv3OmvqAbPDpx8DF3v1y7G8iXTx6s3W72g8Ug/e9CIxR44fuTVlj04dj2rAh7lqn4y5e2ejNHbBfe2PERm+i6lvjnLXxY8Xo49NHfjSXLm63vcierO2rxliah0PbaD0Zo9vzbVC87kfntdZr6TyXDY9aO+bB6xufEhSymwEfPmftl/tg/Lpm3Xqob93rtTaHcX0srZnHOLuv6utr6dS1h9Fcva6umdvVNdmVLo6Ztlm0Nv4a7M69mf0A2rFb298l8LH23rGG5sC8OjS3bg3rHHRMP9Xx6MdeV88jt4HZ84N+NTaBD197zVd+tWY+125fQwjhgKwKqN9+8r9fuQP1k+fuQN178n9o/SzhAgq4G/UTzzyz+frJxfbfvfvuw324CM8KqHqBrRf8LkmZgX5+0a9+Z21qXfdG4/NS3Wh+u0KsNTbo3qhqjIrP32zB50YfXwu3cd/44I2y4r55vrZGazaaV425+uGR8XUMo777YG1fiWNt7g4xduu+r/Oni6euzygGPz+wkR/Nh7pt17qbV63TcfXJuPW6oli6tV1qE6P4a99uHTv/a/vGOFpT1XXzVR38/M8/PLbwPapt29LNURBbd45sw2htfA6z+zGq2wcXmevSGnZtdQ7dnOqa6Hh0jjmz58co7i4ecPuZffX6EEI4AKsC6t/8vX+weRuBdCKOxv8D9cnTduz+zef+QetniSqgxKdu3dr89muvPdyHi+q+BNTsRRi7mtT7m2Dnp75RcuxvIvWNC7o3Gp+X6kbz2xViGK1DnQdj+rhdfOD9eF7XT/i4dayOfdgQc3cOaV3pz3G3H4+StX2dPT/E0jpg3+3BNuC/9mUsxtQa1vNFML5i8zh9PtXXDIzlc67rI59+Djq+jktru9QmsNn1POv8r50f1HdzgtrH12G0vvTZ9dyodHMUHsvIZo3R2vgc8DuzH9Ct/y50e+Ln5zYsreHMOdTNSWuvuW8z79nzYxQ39d1aKCbaZ/bV60MI4QCsCqg//pX/e/P//lf/7f07UEvfwndyjN0fv/xK62eJ7g7UZ/7O3xl/jI+L8CEFFDb14s+bjV/4Oz/VhrjqG2mNr3uj8XmpbjS/XSHW0Tr4+MzliSfW4wP3WddixIzdPmyI+aYLKKH+uyR2+K/nDf3xozVkLt18iFfjeZw+n+prBmzr68z7b+NzaW1n/ND/0AKq7scI+Wd99uFvjW6OFc1P+9at+4jR2vgcGPuQAoqx65wZQ+e6286wtIZdW51DN6d6Hnc2I2bPj1Hc1HdroZhon9lXrw8hhAOwKqC+8847m7d+8oubb33/X7svmgAxJR7Ufeuv/LXNW//0S6f2nZ8lXED92N/+25uf+8pXTusW/wequ8D7xXj2orv2ZjbyU/t1F3O3kR+9SY3o3mi6+Y7i2hXiqvE7jAPEUMcc7Yf68LybV8fafsA+bKinve5Hncts3PtibV+7eEbrDzNrJZb8jOj8y4/WdhQDc9Q55zYex2ifRsh+aQ7bvHbW1gQf3dzEKP7ql0eOqR/ZwFrso7WuKC78LM3R96i2bUs3xxHb7JEY9fE5zO7HqG4bRvHM7lHH0hp2bXUO3ZzqmozWqGP2/BjF3cUDbj+zr14fQggHYFVAwZ+/+97m7Z/63zff+us/uHnnP3vi7I4Tjxx/6wf+u83bP/3lU7uu/xrv/t7vnd514gskXvuX//L0Y4Gd3TnqxdMTAo5nL7rq53U8+pdI1D68sfDXUX8TrG+K1Ya+XTyV7o1m9CaDLx/zIhCvz7HC2KO/Cnfx4c/nofmvxVvXsWNfNqxfF6OvQ7cfI7RGa3u8xtK+dvF06y9m1kGM5kpffCztPeP4Mba1ztdFayV/HqfPR2PLl8BXt9Yj+4rGX7OTv9GeKtb62sGv5kZfbLDlePY883VQHeBPa+X1oHhrPJXqg3jr+Ev1u9DNccTsPjpa17pXHPt6zOwHrO39DHVs5sN5N9q/NZbWkDradL7o2F9n1Qa6tVacbsdzP5bdKB6Hfp2d1t7Xo667bOo+1LUNIYQDMiWg4DvvvLv5k1/9fzbv/OMvbb7xP/3o5vf/5v94+vjOT37ptJ72rt8Mf/Dmm5v/7Z/9s+W7Th1cQLnIC38D2OaiK1v5qRd6XdDVji3/eO0X/eqDcXjTcBt/Q3PcpnujUb/65lXHhGozC2tX18XRWJ1NNy+fk+jiBY9Zb9wV30dsOv/OjA3U8er50u3HCGw7H9uytK9dPPX86PZDMF9sWBfWx9tG83R/GsPRvAGf+sp3jQV1vDqW75fPR/3cl69Pt9Yej1PP3c6u2kBdT8Wp9m6/PF7g2NtnzjNfB7ddOj9gaW+9r/dRfY0BiNV91bkt0cUifA3qGLDNOKA51LXlmHraVbe2H2Jt79eo8yeO+t6xDd154vi8GEPfYqm97s4pxVjXGxv5gtEa1b2Tn9m9X/IB2+xrCCEciGkB9SjhjtO333lnO/F01Ri9Sam+vjkcG3oTq/FD96YcwmUwOhdV352/IYQQQghbcBQC6kYwSuCuSmK39Ne+CKhwLOiv5vVcHNWHEEIIIWxJBNQhURJXOdakzj+CsfRRiQiocEzwx4j6GuP85Dzt7EMIIYQQtiACKoQQQgghhBAmiYAKIYQQQgghhEkioEIIIYQQQghhkgioEEIIIYQQQpgkAurYeRRf0KB/sr/oV6fvy0+Yh7XOeu8dfsD7Y3/rb23e+PrX2/abwu0XXtg8+eSTmy8e6FtB3//GNzZPf+ITV2PtuQbnd4dCCCGcEAG1K/pdpEedzF5lATUbO/3xIx5V8naoPROMs8+Ei3XhWxH5dsSTYyWfo2SXZJj2r7/88mmCWu04JllGPHg9KJH+7N/9u5tvv/122ya6/oI2bIiDeGt9Bd/e/1BchoBi/bv1vUyuo4Cq51q35jM2Z9ePiKgQQrjxREDtylUWUIdiLXZ9TXpNSEjeHsV8D7VnYp8CivVgLVlTqyfRreIESP5IAmknMSVBdTslriSLJI/e19tqIlmTfiWe1QcoBtprjNh3cV8WxBMBdf1gP586Oc+0rzq3XSDO2Jwx+kH0EEIIN4oIqF2JgFpnLXbWzu6oPHKuqoBaSNpGAoZkEEFAPZCof/65587seHzh+edP62tfJfZqV4JfE81qX4WA7oDdOdn/CKiHiYC6HHReLp17izaDP2aEEEK4OURAdShh9Y+VSQRIFHibs43Qwdfjj282d+7cT7TlwxP8GZtZSMDVH2pCLoFBvdtWkbPmp7Y78rUgCh6CNXUfVZTQjq9XXjm/b/K9zZ5pDdTmiZK3eR/5p+1f/+vzMVRm5lvR/HwPHjD6a7kngIgDEvWXXnzx1I6EHTH1+quvntZjq34uvKj3BH8kMrpkU3HR1omlrm5XiI84EZIwEkKMKRvweSueN+/ePX2UDfXuQ/NyP26jWDRv2Simrr/jMdV5ge/HDPijD2JY/dl34vH1x87H8TjA5+W27mOWOtbIT90vqPsBWtPZWBh/dI6IRRtdBw71h5gQQghHRwRUhTdH3hirYKh/cdzHm6gn9jXZr8fYKGlXnSfx2zASLy4QNC/ZdvNcE0FLcc7Ooa69YnRBgQ9idrvaz/uO9qybD76Xxtcx8Fz9gHG6+m1Z8YMo8uRRya5EFUknx2/du3f6yDECCnslxV0/6jlWwk6/Lqmkviav+FDfrp26mhwrjm3AJ769bxcn7TUB586YbBSP96OPHzMX5uXz6GyYN758zr4e6tvVOWvtM2je+CJG7iDiU0LR1w269QSfF77cVse7wli+VkCsrKvv1wjFUX2MIN4121Ub5ryP13YIIYQrSQTUDF2yr8R5lIzPIL81AfGEuRtbNruOPRI+ozl5PF7/qAXUyH/tyyPH1I9sYG3PuqRIfTwGxYUf6iWm1C5G67YN3fgFJf9KNmvySYKqRJzEEKhTUqxkGfsqIDyBV6LqCXOXvNbxeVxLWNXHfc9QY4Q6L/nWcUedO9R5dFQbjV1jYuy6Bsy12gn52XY9Koyrefk6aN/qmozqR/EszWGWbm26/dgH+OW1UufnzNi015wQQgg3hgioDt4cuaNR2SYZn2EkIkhSlJQv2eyanI+EyWhOIyEw8iNGsa+1CWz4+CKPXl9FBT5qMtP5X9sz6rt9h9pH/mkbzWG0btuwtsYnKOlVclsTUo6V5JKQ6v+YPCnuEmfvpzrZkWACz/1/nLpEm4TU4xlR456BcRRLRTHMJOOdDc+po83turFk081/BDZ1fR0fa8luCV9Tn4/20fcbRvWjea3NYYZu3zVeXd+LoPkvxTtjc0p3zQkhhHBjiICq8MZIUuyJwi7J+AydX2BsJd4jm4sk58cgoCaEwWn/Qwuo2TXFr8TVaA4X2SNR5zpAiSxJKI+e6JKgjhJC7KBLYpf6OW5HoluFCHXVdwd+at81ZhL4LqZKZ6NkWsk7jyTzxDmyIY66/iNmYgeNwdgz6+j4vnqsHFPvc4FR/Whes3NYwmPs2hlDQqrGNYvmvjTOjM0ZvP65fnEd69pDCCFcayKgKiQI9Y1xl2R8hs4v4FN+H8XYxyCgAL9LScjIf/XLI8fUj2xgbd26ve+Qb+y7scVo3bZlwo8EAHeDlCSrjQS0Jr7e9tNf+MJpEqwktWOUJCvh1nie7HasJcrbJuNryTdUkdOh9cNWdbVfN1a1GQmNjm3nOzOPisfs/bVvVZCM6kfz2mXPKjN7CLuOpTktjTFjcw7WYR+v7RBCCFeSCKhKTYiVLHcf1VoTAGt0ST5vzN34SzYOMRHrSCTASJiMBMYogR/5qe2jWDS36ht/mi99fa6K0fvUPYNu3QB/oz1TvN1cRTf+yOfSPm1DN7+CEsBOpJB41sR3po3EdilhVUI+6i9I2NcSU8Yi9m3EAWjea4k1MRIrMauufolEbXfB0dmo3eMeCY0O5lzHXKKLUTAecdRxXZz4fLRutLv9qH40L467tdd+ru0LeIxdOyytq2LufKjfkv8Zm3PoGjC6roUQQrj2REB18Maoj2cpCSdBrsm43khlC9VmCSX53r8m4krql2yEx9O9ufu8HPkbJQYcV8Gw5Mf71jlWm24Na5LEsbfX+DqBoXG33bNuveVbbXUs1Xfzr2vVJICryH+dd2GURHPcJZ5qGyW5JLa1TWPAbPJPwl6TUyXYYhTDDEqg3V8XWx2TY7V14sQFh+rq/DU32SgZH613xf15TLNzAo2JTR0Xf1p7n4/8a7wah1Df0bw47vZO/mb21WP0uhpLHVtoLtUHdH6E/M3YnKO73oQQQrhRREBdJqMkP4RKkrZwTUHAzAito0B/zBiIuRBCCDeDCKjLJAIqbAN3oExE/dLXvtb+1TyEY4RzljtE3NWRWNLdI0QUx12/y4bX2enrT3ev/W58CCGEG0kE1GUSARW2BRG18lG+EI4ZPkLoAkXi6ejhOh3xFEII4YQIqBBCCCGEEEKYJAIqhBBCCCGEECaJgAohhBBCCCGESSKgQgghhBBCCGGSCKhwHr6gYOkfpfVNVI/iiwz4Uo3HH89Xde+Z0W/43DT0jW+j31N6FOg3ho5+7fW6zhfahBBCCKtEQO3KoxQSl8llCajy+ypK+ke/D8M3eSkRJjmtSbF+NLTrr0SaxFY/gNq1wdLv04z8KHb5ENjSx30cAsVzyCTef7S1a78MrqOA6s61uuYzNqcgnvix54ioEEIIYZEIqF2JgOrbd2Hgk+RzlOySkErc8Jyk0L8OWYmrbLyv2moiWZN+JZ6dDxj5UT+P5zJRPDddQF1H2FPfV865+pqZsTkDO/6QwR80alsIIYQQTomA2pUIqL59FwZJm5LwKkR0J4F6iYMXnn9+8/nnnjs9BhLGO7dvPyR+5JM2fHiCXxNNt69CYMmPYoqAioA6NP7a6Nph0ea6XtdCCCGEPRIB1aGPk/FxFqGPtejHb73N2ebjL/qfnzt37ict8tElL9SNxqFtlPCQNC8Jogp+3N7ny5hKsPALimfXv1q7v9KmxL+KIJJyknOSdNm89OKLpwKKOtoRCzySKPrH5qjH/q17984Jn5HIGCWbIz8gX/sSUIylO131bpfQmLLxeXs8IBvqaHM/3t7Z0E6d5i07zbX2dzwmYB7VppvbCO2NRKz6a70Uk+w0Ro0D6Ef9m3fvnrOVj1nqWCM/db+g2w/Z6Xz3tg6NX89jZ9WG1zmv+fwvYgghhNASAVUhoUdEuBgg0agJhRL/kXCZoYoT6nj0424c9ZNNFT0ObdvE6L40jvdXPMSo+ousRZ1LgcSzJo8SLySXSjBJgLEF2jlWUqxkmWP5UhJJHW3yU5NK1XsCvOTH+3hy7HHM0sXEmIzt4ykGbOmjOu7K8dzjkS/1cd/49Hl2NrRrTorB10N2XZzOWvsMik9jE+enb906Ow+6NR/VEwdz8nlgW+e1LYoRX15PrL5fI7R3s3FoXet4zqqN/oA0eE2GEEIIN50IqBm6JP8iokF0fpW8KGmlrbu7w7gaG1sXPfomO8VoCfAq+KTPz//8fZFU+47mPYpzjZV+NdmrCamOSYCxJdnkThT11ClZrmLE+2ksfNZElToSa40346cD+9kkWHj8Xo8vja/jzk7UmAXH1C8l8dWmWyPtka9BV+dQv+16VLT2mpevA3F2azKq7+JZm8MMilHnD4z246LIbze/bWz2cm0LIYQQrjERUB0k9YiHigudQwkoHrtYgPGJw0WI7HlUjO5/DeYj/93cRvN24eb1axDngoBSwqckvia6SlCV5JKUKjF125o4134CO91hAe7iMLYS4Fk/Fdl5Ir1GjcXRemh9lpLxkQ3H8uN2o7GwqfMfsSY+6lhr69dR19TnM4pzVO/niuoelYACfHbrexGY/9pazthEQIUQQgjLREBVJJ482eyEziEF1ILAOMXFy7PPbjZf/vJm8/GPbzZ3797vu62AYl673IFiLtsKKPqtzM+T3pr0K0HtEkIS4KdO2n795ZcfSmKX+jlu1yXD2/oh/q69Y5TsOxIiS35HNr6Wsqnj1fWeiQm2ER+MITHha7uG1lR9PNZRnKN64jykgBIag7nPrOsIreHS+s3YnKLX+Il92x5CCCHccCKgKiQNNaG/TAE1I0zo88QT922Jh2MEFEJq27tCElDMjxgQUTPz7tZthm4NCkoy9WUBngDShkjyxLe2fe2rXz1L0EeMkmTGUlKOTdfXGfnRHLZJxrGtSX1HFTkViSPsvN77jRL96pv2mUR/l/muzaNSY/b+ozhH9d1a7zKHymhdKxcZC9+ce0tjzNicoWvQwmsyhBBCuMlEQFVIGlywKMGvQgIQEbuIBtGJByUvSnYlWJbGkc2HP/xBPx4RTwirbeJzAaVjn3snoDQPjb0NI0FmSACQAHZJ7pqA6tqU2C4lrCTkdbzKjB/ZbCMOQPPuEn6H+IiTeFWHff0SCW8HFxydDc9Zc4+bBHwtHtCc65gjRjGCkn+PAzSGRIHPZxTnqH4bAaX6tXMDaowjuvFB6zIai35rwmjG5hz1GhhCCCGEc0RAdUg0gARO9xdZJf+ydaExw4yAgm6cOhYxe9Ij3y6GZsCP9/GxFZOvTxfLtuB3JWEj+euSaJLKJQHVJcCgxNbbZM84MJP8d35UJz/QxTCDEmj31fmrY/KcOvdR5+OCg+Nu/qy723Dsvpeo/ryf9tMZrTf1tNe915wlDHw+HmeNw1Ff1hMbbOVf/epac0zfat9RY/Q6j2PkS3vXtXd+qr8ZG/d59npf+INGCCGEcNOJgAqXT5K2cE2RgNlVQB8cROxF7qqHEEIIN4AIqHAc6I6Ziagf+uhH27+ch3CMcM5yp8nFkt8J47jrd5n8+K1bZ7Ge3kW+6N3kEEII4QYQARWOB0TULl+FHsKRoI/cSaC4eDpqdBc44imEEEJYJQIqhBBCCCGEECaJgAohhBBCCCGESSKgQgghhBBCCGGSCKgQQgghhBBCmCQCKmzHo/zK8XyJxCNBX2ww+p2lm4K+Unzm95v2Bd/Cx5dJHP3a50skQgghhGkioHbluv120dp8SABp/73fezTzLj8grKRfP4xa7f2HT0lOa1LMc+q6/v7jovX3ebwNRuNXW/ej2OVDXNY3simeQybxWv9j+v2j6yigunOtrvmMzSn5GvMQQghhigioXbluAgqYy5KAou1RzHvgk+RzlOySkErc8JykEHu1K3GVjfdVW00ka9KvxLPzASM/6ufxXCaK56YLqOsIe+r7yjlXXzMzNmdglx/SDSGEEBaJgNqV6yqgmBNz69rgUcx7kLQpCa9CRHcSqJc4eOH55zeff+6502MgYbxz+/ZD4kc+acOHJ/g10XT7KgSW/CimCKgIqEPjr42uHRZtruN1LYQQQtgzEVAd+jgZH2cR+lgL/5/zoQ+db3O2+fiL/ufnzp37SYt8dMkLdaNxaBslPCTNI1FUWbLVGEqwsAXFs+tfrd1faVPiX0UQSTnJOUm6bF568cVTAUUd7YgFHkkU/WNz1GP/1r1754TPSGSMks2RH5CvfQkoxtKdrnq3S2hM2fi8PR6QDXW0uR9v72xop07zlp3mWvs7HhMwj2rTzW2E9kYiVv21XopJdhqjxgH0o/7Nu3fP2crHLHWskZ+6X9Dth+x0vntbh8av57GzasO1hWtc/hcxhBBCaImAqpDQIxRcDJBo1IRCif9IuMzgYkyCiEc/7sZRP9nQtiZ8an0H85QfiTvNGR+0Kx5ilN+LrEWdS4HEsyaPEi8kl0owSYCxBdo5VlKsZJlj+VISSR1t8lOTStV7Arzkx/t4cuxxzNLFxJiM7eMpBmzpozruyvHc45Ev9XHf+PR5dja0a06KwddDdl2czlr7DIpPYxPnp2/dOjsPujUf1RMHc/J5YFvntS2KEV9eT6y+XyO0d7NxaF3reM6qjf6ANHhNhhBCCDedCKgZuiT/IqJBdH6VvChppa27u8O4GhvbTvgoRkuAF8FOYzEuIok69zOa9yjONVb61WSvJqQ6JgHGlmSTO1HUU6dkuYoR76ex8FkTVepIrDXejJ8O7GeTYOHxez2+NL6OOztRYxYcU7+UxFebbo20R74GXZ1D/bbrUdHaa16+DsTZrcmovotnbQ4zKEadPzDaj4siv938trHZy7UthBBCuMZEQHVIPFSol80+kowZAcVjFwswPnG4CJE9j4rR/S/hfp59drP53Ofu9+dYfkbzduHm9WsQ54KAUsKnJL4mukpQleSSlCoxdduaONd+AjvdYQHu4jC2EuBZPxXZeSK9Ro3F0XpofZaS8ZENx/LjdqOxsKnzH7EmPupYa+vXUdfU5zOKc1Tv54rqHpWAAnx263sRmP/aWs7YRECFEEIIy0RAVRAJEiCq64TOIQXUgsA4xcULwufLX95sPv7xzebu3ft93f8S2GH/yiv358bjE0988D9atI/mTRtz2VZAacyF+XnSW5N+JahdQkgC/NRJ26+//PJDSexSP8ftumR4Wz/E37V3jJJ9R0Jkye/IxtdSNnW8ut4zMcE24oMxJCZ8bdfQmqqPxzqKc1RPnIcUUEJjMPeZdR2hNVxavxmbU/QaP7Fv20MIIYQbTgRUhaShJvSXKaBmhAl9EDrYEg/HCCiE1DZ3hbDDnjtPmhePiDIJsdG8u3WboVuDgpJMfVmAJ4C0IZI88a1tX/vqV88S9BGjJJmxlJRj0/V1Rn40h22ScWxrUt9RRU5F4gg7r/d+o0S/+qZ9JtHfZb5r86jUmL3/KM5RfbfWu8yhMlrXykXGwjfn3tIYMzZn6Bq08JoMIYQQbjIRUBWSBhcsSvC5K1UTCkTELqJBdOJByYuSXQmWpXFk8+EPf9CPR8QQwmo2PgkoUEw8MnetSSegNA+NvQ0TQlQCgASwS3LXBFTXpsR2KWElIa/jVWb8yGYbcQCad5fwO8RHnMSrOuzrl0h4O7jg6Gx4zpp73CTga/GA5lzHHDGKEZT8exygMSQKfD6jOEf12wgo1a+dG1BjHNGND1qX0Vj0WxNGMzbnqNfAEEIIIZwjAqqDZB7RIOFAQtH9RVbJv2yh2iwxI6CgG6eORcye9Mg3/egvuyU0tvvp6nx9uli2hbm6/waSvy6JJqlcElBdAgxKbL1N9owDM8l/50d18gNdDDMogXZfnb86Js+pcx91Pi44OO7mz7q7Dcfue4nqz/tpP53RelNPe917zVnCwOfjcdY4HPVlPbHBVv7Vr641x/St9h01Rq/zOEa+tHdde+en+puxcZ8zf9AIIYQQbjoRUOHySdIWrikSMLsK6IODiF262x1CCCGECKhwJOiOmYmoH/roR9u/nIdwjHDOcqfJxZLfCeO463eZ/PitW2exnt5Fvujd5BBCCOEGEAEVjgdE1DZfehHCkaGP3EmguHg6anQXOOIphBBCWCUCKoQQQgghhBAmiYAKIYQQQgghhEkioEIIIYQQQghhkgioEEIIIYQQQpgkAuqq4L8Fta9/9MZPvrJ47/DbOvzGzpX56upHhH4vqf5+06NEvxnlv7t0lPBFKdv8yHUIIYQQjoYIqF3Zx28X6Udq/QdpRRVJ+xZQ+trwB770ezWjHzPV1zF//eWXT8VBtVPi2okGJdLdN5KpTSwlviM/it39wCETd+cyBBRjtT+Meolov66TgKrnazc37b9suvP+FK4d+QNGCCGEcOWIgNqVff/4K4IEf/jt2veJhFsjgrpkT1/NTLuSQ7dzAVNFg/p2iWT9jRz57pLfJT8a/5CCZYkIqOsJa/vUyXmmNdZ5539MqOeizttOaO39GhJCCCGEgxABtStXWUARczMWSV8nglwQAMng55977syOxxeef/60vvaVSLpz+/Y54TMSPVVU1frqB0a+LosIqJvD6Hx1Fvem3AkOIYQQwvETAdXRfbROCY4SHm9zdk2ERgJKQk3+GfsiPzSruTVxSoj4X9TBk0SSQYTSSy++eGrHX9URU6+/+uppPbbVH3X080RzJDK6ZHPJj7dXX7vgd7pglPgylmzA5409dyq0Jp0N1LGqjdo1b9l4TOyB93fo63c98OPtw6R+AP3xiViWf+aIH9+Tujb1fALqYDSvWbCnn48H9VzQOeI2XVyyq+fYCNZkLW7NscZ0xuAPGiGEEEI4TiKgKiQxJDT+fwkkWlW4SNgc8g4UoueiAmrFB0mlJ49K4pVskgRy/Na9e6ePHCOgsOfYBQB9qMMHdu5XiW9NKqn3j0nBkh/gOXWeHMteNjPIj8+B8WqCLCHisXNnTDaam9vwWPt85UtfOue32mjtqfM5+3p436VEfq19Bs2b8fHDPhHHm3fvPrRuoPh17jjU4UvzkG2d17Zo7X2dl+Ko6Bzw9V4Cn2u2rMvi2vOazP9ChRBCCFeGCKgZdNfJ79pcVQG1Mk5N4mtCSjKoJJfkEahTkqokuvbj0RPNLmFWnSeba3465Gc2CRY+N9XJV52XjjtqzEAcxLPUr9po7BoT7XVujOXrVun6bAs+NIavw2huir8TLtTNzGtbdl37XWAMXitLfhVPtwZndNeXEEIIIRwtEVAdJDL+sTxxHQTUyseFlGwq4atJLcdKfEkOdbfIk+Uuce6Ej+xIQoFEkzs5nc8lPx1dIr0G4yiWimLAH37xX/uLbuwuiZddHUs23fxHrMWl8fG/Fv8IPxd8jt3cYCl+6mjDRnXu3223oVt7wLfWd2Y919A4dQ6O1mV1ThFQIYQQwpUiAqoi8eRJ1g26AwVKbkn6agJMIjpKGrGDLpmnbiY5druL+FGCW5P6JTTvUUIMXUwVjY2t6oiXuBWPbHxtq82SAKnMxAXyKTHhMa5BXFp7n2ONWyzF3621+3fbbejW3qFec1/b6xEaYylWrcnMnpy+nh9//GKv6xBCCCEcjAioCsle/X+E6ySgJnwoGeduUE1GSXxHCb3aQElqxyjxVMKtRHxXP6A5rCavxkwCv5agQ2ejhFpz6+KrNksCpLLtfLfxLXx9fI41brE0BnVVwMys/xoz+wPbrpfQXJfi1Lyn/fOazP9AhRBCCFeGCKhKFRgST/UjfIB42lfiQ5J5CAFFrMS8kDgrSexEConvKOleaiNhXUo6NWZNqitrfkBJ9CiWEbMx4Lcmx92XSHgSL98SGdVG7az5LgJK/qqIGVHjcRiPOOq4LnA8/pGvpfipq+vs/t2WeuJZ2xfo1r5jNJbm0rVpPl2bw9yIgVi69odY+VhtCCGEEI6LCKgOEhr93xOCRX8hrgJKd6Fk24msJSRmvH/1s2Sz692vCeE3SqI5rnXeNkpyO+GjxFisJb3Q+VHSLD9bJa8FJdAeV+evxs6x2rokXn7drvrgq+FZP9ksCZAOxnN/vhf48DbwWITGpL2Oi73W3udY51bnJXwdu3PF/atOtvSv9h3d2qvOY+nGAc2lax/NC7RWdQ+cNn79gWab60YIIYQQLpUIqJvIxF2oEK4iiKX6NfhHy74/BhxCCCGEgxABdVPhL97cxXogon77136t/at5CMcK5239LS2/s9X1uWx+7md+5izWmTvBIYQQQjg+IqBuMoioJHDhCqOP3EmgzHzM7yjgo3tPPJHXXgghhHAFiYAKIYQQQgghhEkioEIIIYQQQghhkgioEEIIIYQQQpgkAiqEEEIIIYQQJomACufhW/n8t6YO+VXn/GP9449f7IeCw0PwpQp8uUL9Xaebhr5wwn+P6lGj3446+rXXV6rn96hCCCGEVSKgduW6/4bLoX8rqoynpH/0rWr8YKkSYZLTmhTznLquv39zm//gam1b+1a3kR/FLh8CW/q4j0OgeA6ZxGv96/peJtdRQHXnWl3zGZtT9NMGEVEhhBDCIhFQuxIBtT8Ga0nyOUp2SUglbnhOUoi92pW4ysb7qq0mkjXpV+LZ+YCRH/XzeC4TxXPTBdR1hD31feWcq6+ZGZszsMtPG4QQQgiLREDtSgTU/hgkbUrCqxDRnQTqJQ5eeP75zeefe+70GEgY79y+/ZD4kU/a8OEJfk003b4KgSU/iikCKgLq0Phro2uHRZvrfl0LIYQQ9kAEVIfEg/8vkD7Wwv/nfOhD59ucbT7+ov/5uXPnftIiH13yQt1oHNpGCQ9JM75JjLr2EWsCinqPhzXZ5X+XlLA14yjxryKIpJzknCRdNi+9+OKpgKKOdsQCjySK/rE56rF/6969c8JnJDJGyebID8jXvgQUY+lOV73bJTSmbHzeHg/Ihjra3I+3dza0U6d5y05zrf0djwmYR7Xp5jZCeyMRq/5aL8UkO41R4wD6Uf/m3bvnbOVjljrWyE/dL+j2Q3Y6372tQ+PX89hZteHasuvrOYQQQrgBREBVSOgRI343hESjJhT7+EutizEJIh79uBtH/WRD20gk0bZLjEsCap8JVp1LgcSzJo8SLySXSjBJgLEF2jlWUqxkmWP5UhJJHW3yU5NK1XsCvOTH+3hy7HHM0sXEmIzt4ykGbOmjOu7K8dzjkS/1cd/49Hl2NrRrTorB10N2XZzOWvsMik9jE+enb906Ow+6NR/VEwdz8nlgW+e1LYoRX15PrL5fI7R3s3FoXet4zqqNXvuD12QIIYRw04mAmqFL8vcpoNxvFS60ceyCDlwYYSsBhU99k51itAR4miUBRV0X0y6M5veAmuzVhFTHJMDYkmxyJ4p66pQsVzHi/TQWPmuiSh2Jtcab8dOB/WwSLDx+r8eXxtdxZydqzIJj6peS+GrTrZH2yNegq3Oo33Y9Klp7zcvXgTi7NRnVd/GszWEGxajzB0b7cVHkt5vfNjZ7ubaFEEII15gIqA6Sev94mrgMAcVjFwtINLkIkT2PitH9z7IkoNTGOBe9E4X/BQGlhE9JfE10laAqySUpVWLqtjVxrv0EdrrDAtzFYWwlwLN+KrLzRHqNGouj9dD6LCXjIxuO5cftRmNhU+c/Yk181LHW1q+jrqnPZxTnqN7PFdU9KgEF+OzW9yIw/7W1nLGJgAohhBCWiYCqSDx5stkJnUMKqAWBcQp+dNfp2Wc3my9/ebP5+Mc3m7t37/fdt4ASWgMJul3Goc/K/DzprUm/EtQuISQBfuqk7ddffvmhJHapn+N2XTK8rR/i79o7Rsm+IyGy5Hdk42spmzpeXe+ZmGAb8cEYEhO+tmtoTdXHYx3FOaonzkMKKKExmPvMuo7QGi6t34zNKXpdn9i37SGEEMINJwKqQtJQE/rLFFC0rd3loc8TT9y3JR6OEVAIqV1/mLbGscRF1qJbg4KSTH1ZgCeAtCGSPPGtbV/76lfPEvQRoySZsZSUY9P1dUZ+NIdtknFsa1LfUUVOReIIO6/3fqNEv/qmfSbR32W+a/Oo1Ji9/yjOUX231rvMoTJa18pFxsI3597SGDM2Z+i1v/CaDCGEEG4yEVCVKliU4Hd3WBAMK3dPFunEQxUuEidL48jmwx/+oB+PiCeE1S7x1TiW2Ma2MiG+JABIALskd01AdW1KbJcSVhLyOl5lxo9sthEHoHl3Cb9DfMRJvKrDvn6JhLeDC47OhuesucdNAr4WD2jOdcwRoxhByb/HARpDosDnM4pzVL+NgFL92rkBNcYR3figdRmNRb81YTRjc456DQwhhBDCOSKgOkjm9bE0CRwEQhVQSv5l24msJWYEFHTj1LGI2ZMe+aYf/WW3hs/dcQHX2Uwmyi30XUnYSP66JJqkcklAdQkwKLH1NtkzDswk/50f1ckPdDHMoATafXX+6pg8p8591Pm44OC4mz/r7jYcu+8lqj/vp/10RutNPe117zVnCQOfj8dZ43DUl/XEBlv5V7+61hzTt9p31Bi9zuMY+dLede2dn+pvxsZ9zvxBI4QQQrjpRECFyydJW7imSMDsKqAPDiLW/1gSQgghhIeIgArHge6YmYj6oY9+tP3LeQjHCOcsd5pcLPmdMI67fpfJj9+6dRbr6R1t7iZvcxc9hBBCuIFEQIXjARG165dehHAE6CN3Eiguno4a3QWOeAohhBBWiYAKIYQQQgghhEkioEIIIYQQQghhkgioEEIIIYQQQpgkAiqEEEIIIYQQJomAOnb07XTb/HO3+ty0ryPWb2it/KbUKvvysy18A2G+yn3vdL/xdBPhGwH5YovR723tG32F+5VYe66v2/5mXgghhBtLBNSu7PO3i/DhP0rrYulYBRTx7ENg7DK/EYcSUI/id6vK7+/ox1q73w/SN72RCJOYkqDWpFg/Ptv1VyJdf5jW20TXX4z8KPYK9t7/UBDPoZN4/1Hfrv0yuI4Cqp5r3ZrP2Jy9piOiQgghTBABtSv7SKI7HwgJF1H7FBj75BgF1KHYt4Bq1lLJZ5fsSjSRGOq5f122+pIsYuN9va0mkjXpV+JZfcCSH+w9nsuGeCKgrh/s51Mn55n2Veekv2ZmbM7QH066thBCCMGIgNqVfSTRvFF3d4m8PgLq+NingFpI2kjyOiHCnQTVIw5I1D//3HNnQofHF55//rRedUKJvdqV4NdEs9pXITDyA4wZARUBdRn4a6Nrh0WbfV3XQgghXGsioDqU1HYfq1PC723OrBBYSsIZQz8oq+d37ty31zi1H8ceB2DPOG5HfG7Tja/YZOMirxtHdOONOEkwWx/Qicol6n51/Zk39a+8ct6WOGb97GvvHcXVzJfEv94BIiEnMSdBlw3HL7344mkd7Yip11999bTePzaHgNCdK+o9wR+JjC7ZXPID1O9LQGks1qG72yUYUzbg81Y8b969e/ooG+rdB/F6e7VRO3X4l43m2vV3PCbto7eP5jZCa4+IVX/2nfVSTLLzcTwOUCzUu637mKWONfJT9wvqfridzvc1GL87j51Fm33+cSSEEMK1JQKqwhsob56e0PLmXf8qedE3WiXrXWKgRJ3k2pN2JejeXvsK4qqChrE8We/moLi8L3V//+9/YAOMXddkF2bmsg11jgL/rKHH3O2rGPmBi+690+3TA5SQe/Lo4oVjHkl+37p37/SRYwQUfZUUY6ckWb6o51gJO/26pJJ6T4DX/KhPTY4VxzZ0MTFuHQ/fjIG96u6c7Lf6KR73RR8/xh++PdGvNtoPfCmGuh6ii3Ob9hk0b3wRI3cQ8SmhWNdc8dd6zUG+3LbOa1sYy88fIFbW1fdrhPZuNg7s6niVVRvGGrwmQwghBIiAmqFL8i+aREuodImB2hhvJDAYd2nsmpi7T7fj2IUC/UbCwaHfSHxsw2h+u8J6dvF38S6NPfID+xJQ8tOdAw+oyV5NSDlWIo4tUKekWMlyFSPej2P84Zf+HHudj7fmp0MJs/teo8YvJBQ0vnxXO6fGDOq3lMRXm26NgOO6Bl2d0Ny2WY8O5qx5+Toozromo/pRPEtzmIWx/PyBbj/2AX4RW3V+zozN3q5tIYQQri0RUB28gfpHs4Qn2o9SQHliP0ry6ecCqVIFlPx081KysM2c9pVkjOa3K6zLVRFQS+fAA5Tw8dgluiSCSnJJSCUu3LZLnL2f6mTHeMBz7uQoAZ7104Gd/HTtlRpLhfXAjse1ZLyz4Tl18iO7pbG6+Y9YEx8+1sz6dfia+nxGcY7q/Vzx+kcloDReXd+LoPkvxTtjc8q+rm0hhBCuLRFQFd48ERWeTHSJ9kWT6KX+/gY+SvKrQKrU9iWxILaZk8fYtc8yE9c2sG9XRUDJT0lcHU96u6Sf+lFCSAIMXRK71M9xu4v6IXbm0LVXRsl+hbVY89vZ1LXkkWTex6s2szHBrPjQGIxd13YN4lAfj3UU56ieGIn1UALKYQwJqZl17dDcl8aZsTmD68HotR9CCCGcEAFVIYmob55dor2PJLobC1z87Dq2++CYMRirJEkPUfuN6ATJLiyJmF0YrWkX79LYIz+wj70XE+utRJYvC6gJIG018fW2n/7CF077KkntGCXJSrhJypVkd/3FUrKtOcwm4xpvNDdRRU4Hbdhgq7rar0v0q43WYybR33a+M/OoeMzefxTnqH601tvOoaNb145dx9KclsaYsTkH6zBzDQwhhHBjiYCq1ERbSTZ3pWqiTfI7SrJnkKjxRHw0vo/NG7zbdHSJOf26eTgaz2MizvolErLDp9dXNOYoIenWoGPNj8DuUQsouOjeiy6uAkmxREqX5Na6mTYS26WEVQn5qL9Y8wPYEPs24gA075rwV4iRWIlZdfVLJGq7C47ORu0etxLxtXgAmzrmEl2MoDG79WMMiQKfzyjOUf22Aor67lzs8Bi7dhiND8xnNJb6LfmfsTkH1xauMWvXoxBCCDeaCKgO3jxJ1kEJNslyTbT1Zitb6JLxJSQgfDxPpms7zCTuzKETGyQi7gtqslDHHI3HXN1PN57Wckn4SMjITzfekp/a31HiRax1bdVPezbjR+xj70FrXffAUOLbJdEklqNElvouAQYS29qGPWPAbPLf+aFOfmAUwwxKoNf81TE5dh91Pi44VFfnTxvrLpuRABnh/jwm308xWm/FiY3HCviTMPD51DhrHEJ9WUvWFDv3z3Fda9nSv9p3eIxeV2MZ+WI+o/bOj5D9jM05uutECCGEUIiAuq6QkC8k5eGISNIWrikImIsI6IOiP2ZMCMMQQgg3mwio6wCJ97PPnj/2Oyvh+EHsmoj6xV/4hfav5iEcI5yz3GXiro7EUr0T1vW7bH71l37p/utPd5SX7pSHEEIID4iAui7wV9OLfpwsXC65axiuOPrInZB4Onq4XkY8hRBCmCQCKoQQQgghhBAmiYAKIYQQQgghhEkioEIIIYQQQghhkgioEEIIIYQQQpgkAipcDfgnb74c49j+0Vvf3tV89bH/Zk79DZ9dqd9sdkg0n9Fv9uyb+oUEhxr3wvBNik880f92WgghhBCuPBFQu6LEOd+aNmbt69T1uysz3xh4rAKK/R/EdJMFVPdDtbtyUeGmNZsVY25f4/c9Beywd5tTOC9GP0AdQgghhCtNBNSuRECts08BdYyQhB84SY6A6m22QWs48sfaSiB5/F0cPG9FVK4PIYQQwrUlAmpXkiCtc50F1NrcHhERUL3NtrB+nfBR3HdO9pV2j7/rs7gfl3SOhBBCCOHREgHVocS++2FaJUXe5uySLFWfVZRJrI3GIbGk/XOfu9/G8zt37vvUHZIZG/nDt4/l8SgW/IFs3IfXV9xO67y0ZkuxuA1+Xnnl/qNsicPt6joyd9bebWbReuKztCnh110MEnISc7fh+KmTxPv1V189Z9uJBOrULmrCTqLv7e5HbYxDbKqX31mRo3kxNmgs9+v1FYkPxuM5IkX1b969e/rYrdWMgJKQ0RidjUOcdT2AMah/6969U1++NrTVGEZrewbn6+A8CSGEEMLVJAKqQqJD0uOCgqSpJttKxruEfhskEDwxow54LpHh49Q+PHKMDTE+/vj92CQoaJ+xkS+ONf86Tx3LF3VdjCBhqLlUZgSUWFpvrYfvEfPwY42learfLiJqi70nwR4JKOpJvpWkKxnXsYSDJ+fdHQ+eu3DoBId8q18dawb5pZ98K54qLDS/zr/GxhdC5ZlPfWrz6Vu3zsRk9dXNp7KNgBrFxrH2Sv5koxjqulP3wvPPj8flHPPXUwghhBCuPBFQM3RCYB8CaiQ8HJLGLgGjD+MTBzYSAoqVOhcNMzZ6XgWNJ4GjeXs8quvWzRmN17G03vTX3FRXx2Z+NT75pE11M2wRtyflXt8l8UraXeTUvtWmJvqC45rU00djuo9ZRkKGY+ppV91IpAB1Em+KHx8j/zMCag2Nw7guAEUdo66rjrVm2MmWOtp8rc9Yew2EEEII4coRAdVBssMdjYonQUsJ/SwzyRX+R6JBooZETs/dpxJ92mdsVN/NnXraR/PmuAqUtflp7KX5i6X1pr/iU10dm37dvKDzucTavAwS8F0FFI9VmFQb+ZEwcLpxSfppq35nGAkZjqu/NQGl2Hw+I/+j+ouALxc9VQQpLsWvGLjbxKPWX33r/M/Y4lwJIYQQwtUgAqpCokNS7clalwRdZwG1FM9VFlA1vl3ZIu5DCahOqFQkAhBQLhZmGQmZqyigfNy6pt7u8TM+a1fn1M3/DM5DPi7r52YIIYQQrjQRUBWSNAkN1XVCYB8CysVL1w5dPOCCwG08Vvc/Y+PPfSxnNO9OoHTr5mi8CSGyuN70ZxxPUuvYPn/Z7MoWe+9iwetnBRTH1Nd+sumS/xEk+tjyf0e7CJLrKKCIBXTXbgQ23X6srj/n377OuxBCCCEcBRFQlZqMKxHnrlRN9EmgL5ockRRW3zzXscb3ZJ0274MPxeHCQQKF9hkb+ermKrYRUPI9EhpqH43lXFRAaawa4674enbtD3Cx4PUzAqqKJR2T0HvCznMl+aqrSCTIpvp2ECrYzgoZjquA0lw60eNr4nO+iICSH+B5ZyPkr8bsyF+3Px4HzxfH7F4XIYQQQrjSREB1kPQgIkBJeJfoK6mX7ZLwWII+7qOKBCX/aq9igYROyfxFBZT8eTygmEZCZpQoaiz5UQy0aWwfB3x+XSzVhnn4sY/r+9GNV/vNIv++bg9Qoo0IqSj5nhFQIOEDtOnuURU+ElGOxlJbFSCqd18SF539SMhw3IkRF3wgoTEroLo5gfr6WPKjMbzN11D4nDvkz/fH6+Wnm/cZ3TkYQgghhCtPBFQIu0Ki74IwBDH6Q0MIIYQQrjwRUCHsipJkE1Ff+qmfOnenI9wcfvEXfuGDcwPhFHEdQgghXEsioEK4CBJR5WNt4QbDR/eeeCLiKYQQQrimRECFEEIIIYQQwiQRUCGEEEIIIYQwSQRUCCGEEEIIIUwSARVCCCGEEEIIk0RAHQH+2zv1d2cuwuj3eQ7BIceuv83T/RZQCCGEEEII+yACalf2+DsvN1lAdT8oexH4gdRdBVQVYqAfdd3GZvQDsHBZ+xFCCCGEEPZDBNSuXIEfyoyA6m1mkViqAsmZsQHWgfVYswshhBBCCMdNBNSuREAtch0EFMz4m7FhfsyT+XbtIYQQQgjhahAB1cEPYH73d282jz32Abdv32/jRzI/9KHzbY7sJtBdCX28q0uwOX7qJDl//dVXz9l2dzJI0tUuqoipNu5HbbUPNtRvI3LoAz6ei4ylj7nJjr48v3Oypqp/8+7d08eRGFkTM9TTvmTj4G9NCK7ZaJ+7PQshhBBCCFeLCKgKd5a4q4SIUh2JL6IJ8eR2e7wDhVgYCSjqERASMBIlOgaS+NqfhN0T+youusRevrH1Yx9rBnzST+NrLI8HNL/Ov8amz1v37m2e+dSnNp++detMTHaCpM6xso2AWopNzNhoHks2IYQQQgjhahABNYPuOvndpQMLKE++JQIkcuqxcAElm5rEc1zFBH40Zud3hireoBM3MwKKR8WPX4mxXQTUGhqHcaEbY8bG6dYihBBCCCFcTSKgOhBKax/POyIBhQ0f86t9PXGXHyX9TjcufWnbNfHvRMMuAkqx+ZwfpYCqMMaavyWbpfmFEEIIIYSrRwRUReLJk/MjvwOFzayAmknkJVAQULuKkesioOpadyzZdOsQQgghhBCuLhFQFZJyvkDC/wfqCgioaiORoeR9RggI3VHh/45GQmWN6yaguvjEyEZzm1nzEEIIIYRwNYiAqiCS/AsjJJ7qR/gA8VTF1o64WPD6TmC4mOC4iiUd14/gYU/dkhigzW2WRAACBttOyMwKKM2l8+Fr4nPW/HYRUPKzZCM0Tp3HrA3xzYwTQgghhBCuDhFQHQgj/d+T7jwhlKqA0l0o2XYiawEl84iQisTBjIDqfGFPe03sqfNxQGOprQoT1ft4Eg6dPVDXjd0JCs1R8chmVkDV/o7HDPLTxcF4a/1nbEAxdW0hhBBCCOHqEgEVQgghhBBCCJNEQF0SP/czP/PQnYxwM2Dvu3MihBBCCCEcPxFQIYQQQgghhDBJBFQIIYQQQgghTBIBFUIIIYQQQgiTRECFEEIIIYQQwiQRUCGEEEIIIYQwyWOb3/iNTQghhBBCCCGEdR7bpKSkpKSkpKSkpKSkpEyVCKiUlJSUlJSUlJSUlJTJEgGVkpKSkpKSkpKSkpIyWSKgUlJSUlJSUlJSUlJSJksEVEpKSkpKSkpKSkpKymSJgEpJSUlJSUlJSUlJSZksEVApKSkpKSkpKSkpKSmTJQIqJSUlJSUlJSUlJSVlstxIAfXee5vNRz6y2XzXd202r7/+oPIKFcX/sz/7oOIIyxe/+MXNZz/72c23v/3tBzVXs7zxxhubp5566vRxVGZs3n///c3TTz+9uX379oOalOtQ2POPfexjm9dee+1BzXzhtcFr5Mknn9yp/3Uuh7x+sPbs4dLrd5tyqH3lWsIYYpdri2Jlvbct9NmlXy3EzbWRa+S2RdfVfe7fzPX8WIrOgX3sw1o55FheGLe7Fjyqvd/1en7RcuixtZ8XuX7c9HKpAmokZFT/y7/8oGLP5ZAC6jOf2Wx++Ic3mz/90wcVeygXEVCs6SHmzUV2JgGauWhc5kVtJkmYsblpAuqQe3aRJPCi5SLzPFSifRULezlz/dhHYe3ZQ/ZyH+XQ+3qRa8uurx3Wal8ig7iPSUDNXM9HZV/n7awfJcG7xkuZPf/3Mda2RfvbvY4exd7jZ9fr+UXLNmPP7tlMucj146aXoxBQf+NvnBcDj1pAHbJEQF1dAbV08VaZsaHctIvUIfds1yRwH+Wyzs3rXmavH/so7N2+kpHLKBe5tuz62mGsfe0PvoifeVx2mb2ej8q+ztuc//cLsR3y3LjM6/k2Y+9zz25abrK/stn8R0M+lRVYpX7XAAAAAElFTkSuQmCC" alt="">
错误写法:
var myCommentLineChart = echarts.init($("#comment-line"));
正确写法:
var myCommentLineChart = echarts.init(document.getElementById('comment-line'));
ECharts使用:this.dom.getContext is not a function的更多相关文章
- Uncaught TypeError: this.canvas.getContext is not a function
/**************************************************************************** * Uncaught TypeError: ...
- echarts 通过dom获取echarts实例,批量监听reset
重点在于 echarts.getInstanceByDom 这个 API 我的js: // 懒加载优化:滚动节流策略 var __SCROLLTIMER__ = null // 重新设置 echart ...
- 通过百度echarts实现数据图表展示功能
现在我们在工作中,在开发中都会或多或少的用到图表统计数据显示给用户.通过图表可以很直观的,直接的将数据呈现出来.这里我就介绍说一下利用百度开源的echarts图表技术实现的具体功能. 1.对于不太理解 ...
- echarts饼图
1.添加点击事件并跳转到不同的页面 // 路径配置 require.config({ paths: { echarts: 'http://echarts.baidu.com/build/dist/' ...
- 图表插件使用汇总(echarts,highchairts)
1.echarts之饼图显示数字 option={ title: { text: '某站点用户访问来源', subtext: '纯属虚构', x: 'center' }, tooltip: { tri ...
- html5中Canvas为什么要用getContext('2d')
HTML DOM getContext() 方法 HTML DOM Canvas 对象 定义和用法 getContext() 方法返回一个用于在画布上绘图的环境. 语法 Canvas.getConte ...
- 使用angular封装echarts
Echarts是一个开源的图表组件,图表比较丰富,工作中需要用到它来搭建一个数据展示系统.但是系统原有的框架是基于angular的,而echarts是基于原生js的,如果直接使用的话就丢失了angul ...
- echarts通过ajax向服务器发送post请求,servlet从数据库读取数据并返回前端
1.echarts的官网上的demo,都是直接写死的随机数据,没有和数据库的交互,所以就自己写了一下,ok,我们开始一步一步走一遍整个流程吧. 就以官网最简单的那个小demo来做修改吧.官网上的小de ...
- ECharts使用心得——矩阵树图
1. 缘起 最近实验室 boss 让用矩形树图做一下研究数据的展示,囧,矩形树图是什么鬼.问了问师兄,说用 R 语言可以实现,让我去研究一下. = =,那这周不是不用干别的了. 刚好最近在研究百度出的 ...
随机推荐
- 002 requests的使用方法以及xpath和beautifulsoup4提取数据
1.直接使用url,没用headers的请求 import requests url = 'http://www.baidu.com' # requests请求用get方法 response = re ...
- python模块------shutil
说明 shutil -- High-level file operations 是一种高层次的文件操作工具 类似于高级API,而且主要强大之处在于其对文件的复制与删除操作更是比较支持好. copy() ...
- .call() 与 .apply() 的用法及区别
首先说明两个方法的含义: apply:调用一个对象的一个方法,用另一个对象替换当前对象.例如:B.apply(A, arguments);即A对象应用B对象的方法.call:调用一个对象的一个方法,用 ...
- ABP代码生成器与升级到VS2017VSIX
首先,我不是要分享一个代码生成器,而是怎么升级到VS2017,简单介绍下 如何将2015的VSIX项目升级到2017 阳光铭睿 写了一篇<分享一个与ABP配套使用的代码生成器源码>,并在群 ...
- form表单中button按钮返回上一页解决办法
解决Form中button按钮不好用的问题解决办法. 方法一: 1.在Form表单标签中国增加一个属性,如下图,红框处 2.返回按钮样式 3.onclick方法需要跳转的页面,遮挡处为需要返回的页面 ...
- Java中值传递和引用传递的区别
在Java中参数的传递主要有两种:值传递和参数传递: 下面是对两种传递方式在内存上的分析: 一:值传递 解释:实参传递给形参的是值 形参和实参在内存上是两个独立的变量 对形参做任何修改不会影响实参 ...
- python-数据类型之题型
1.让用户输入任意字符串,获取字符串之后并计算其中有多少个数字. total = 0 text = input("请输入内容") a = 0 while a <len(tex ...
- FSBPM 开发过程中一些提醒备注信息(供参考)
------智能OA系统开发过程中 前端开发前端 搜索查询的配置 运算操作符: like equals 共两种筛选数据方式. html标签上配置一下eg: <inpu ...
- Anaconda python环境管理
1.查看conda的版本: conda --version 2. 查看当前系统安装已的python环境: conda info --envs 3. 添加python环境: conda create - ...
- FFT快速傅里叶变换算法
1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...